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Preface 
The International Conference and School on Radiation Imaging (ICSRI-2021) is a biennial scientific event 
organized by the dosing, analysis, and characterisation with high-resolution laboratory of Ferhat Abbas-
Sétif1 university. The ICSRI-2021 was held for the first time at the University of Setif1. Setif is one of the 
most active and beautiful cities of Algeria. Due to the COVID-19 pandemic, the conference took place 
virtually while the school was face-to-face. This year scientists met to explore the development and 
application of radiation imaging and image processing in the domains of medicine and industry. As it is 
well known, radiation imaging is a field of science that cover a wide variety of disciplines such as imaging 
principles and methodologies, development of applications, imaging technologies, design of imaging 
systems...The recent progress in radiation imaging has been accelerated by advances in computer 
technology. Some imaging techniques are replacing other less efficient in terms of examination capability 
while some are able to provide almost perfect internal details with high contrast and resolution. As an 
example from medical imaging, techniques using radioisotopes provide functional and metabolic 
information that can be used to complement the morphological information provided by X-ray CT-scan. 
Image processing has always played a major role in the development and use of radiation imaging 
techniques. Image processing in radiation imaging is, indeed, a science field presenting up-to-date 
detailed treatment techniques and algorithms for the registration, segmentation, reconstruction, and 
evaluation of imaging data. The ICSRI-2021 was focused on all above-mentioned radiation imaging topics 
and moreover on: non-medical radiation imaging, imaging methods and systems development, radiation 
imaging simulation and modelling, molecular imaging and nuclear medicine,  medical radiation imaging, 
advanced imaging methods, image processing, and imaging data analysis. 
Ferhat Abbas-Seitf1 University, Setif, Algeria, organized the ICSRI-2021 from 26 to 30 September 2021. 
The Algerian Atomic Energy Commission (COMENA) kindly supported the organisation of conference. The 
conference has included plenary sessions with conferences presented by eminent scientists, and orally 
and in poster sessions covering the different conference topics. The invited talks were selected to review 
recent advances in the different topics covered by the conference. The conference was followed by a 
three (3) days school for doctorate students and newly qualified academics and researchers in the field of 
radiation imaging and application. The program of the school included lectures and practical sessions on 
three topics: 1- 3D Tomography, 2- Scanning Electron Microscopy (SEM), and 3- Image processing in 
radiation imaging. Engineers, scientists and medical professionals from industry, government, healthcare 
and academia have used this opportunity to improve their technical skills and expand their knowledge in 
the field of radiation imaging and image processing by attending the school and interacting with experts. 
I would like to thank and highlight the outstanding efforts of the local organizing committee, the staff of 
Ferhat Abbas-Setif1 University, and the International scientific and advisory committee. Thanks are also 
extended to our partners: the Atomic Energy Commission (COMENA), the Nuclear Research Centre of 
Birine, the Nuclear Research Centre of Algiers (CRNA), and the Nuclear Research Centre of Draria (CRND), 
Algeria.  
 
Pr. Fayçal KHARFI 
General Chair of the ICSRI-2021 Conference 
Director of the School on Radiation Imaging and Image Processing 
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The Editor 
Prof. Fayçal Kharfi is Professor of Physics at the Department of Physics of Ferhat Abbas-Setif1 University. 
He teaches several courses on molecular imaging, computed tomography, radiation physics and 
application, and medical physics. He is also the actual Director of the Dosing, Analysis, and 
Characterisation with high resolution Laboratory (LDAC). The focus of his actual research activities is on 
ionizing radiation application. His research crosscuts a range of areas in radiation dosimetry, radiation 
therapy, computed tomography, archaeological dating, and nuclear 
medicine. His overarching goals are to understand how ionizing radiations act 
on matter and how they could effectively be applied for many purposes and 
applications such as therapy, archaeological dating and imaging. He is 
an associated editor of the “Technology in Cancer Research & Treatment” SAGE 
journal. He published many research and educational works in various international journals, books, and 
conference proceedings. He is frequent reviewer, expert in radiation application, and member of many 
international associations such as the international society of neutron radiography (ISNR) and the 
international association on engineers (IAENG). He supervised many doctorate thesis and research 
projects in the fields of radiation dosimetry and application, radiation therapy, and medical imaging.  He 
contributes to the organisation of numerous national and international conferences and workshops on 
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Breast cancer classification 
Ahmed Zoubir Messaltia,*, Sadik Bessoua  
a Department of Computer Science, University of Farhat Abbas Sétif1, Sétif-19000, Algeria 

 

 
ABSTRACT: Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of 
mortality. Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny 
speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor conduct a diagnosis to determine whether it is 
cancerous and, if so, whether it has spread to other parts of the body. In this research, we trained five different classifier models to 
develop a benchmark breast cancer classification where we have adopted two different sub-tasks, in which we used the breast 
cancer dataset obtained from the University of Wisconsin Hospital at Madison, USA, which has a large number of features. Not 
all of the features we find in the dataset are helpful in building an Artificial intelligence (AI) model to make the necessary prediction. 
Using certain features can make predictions worse. Therefore, the selection of features plays a huge role in building a machine-
learning model. In this work, we explore the correlation metric to choose the right features in building a High accurate model. The 
following study provides very good results, the best model as found in our experiment is the random forest model with the use of 
correlation matrix to extract the best features, and it gives a prediction accuracy equal to 97, 59%. 
Keywords: Machine learning; Classification; breast cancer; X-ray; Artificial Intelligence. 

 
 
INTRODUCTION 
Medical images are an important means to assist doctors in 
making judgments. It is certainly one of the fields of medicine 
that has undergone a real revolution over the past twenty years. 
These recent findings not only allow for better diagnosis but also 
offer new hope for treatment for many diseases like breast cancer, 
which is the most common type of cancer worldwide. Breast 
cancer has now surpassed lung cancer as the leading cause of 
global cancer incidence in 2020,with an estimated 2.3 million 
new cases, representing 11.7% of all cancer cases (as shown in 
Fig. 1-A). It is the fifth leading cause of cancer mortality 
worldwide, with 685,000 deaths (as shown in Fig.1-B). Among 
women, breast cancer accounts for 1 in 4 cancer cases and for 1 
in 6 cancer deaths, ranking first for incidence and mortality in 
the   vast   majority  of  countries1.These figures show the      
importance of early detection of this disease, and its late 
diagnosis often results in cumbersome, mutilating and expensive 
treatment with a high mortality rate. This study aims to develop 
a benchmark Breast cancer classification based on  Wisconsin  

 

 

(Diagnostic) Data Set, and to apply existing approaches on the 
proposed data to predict if a given set of symptoms lead to breast 
cancer. The task is often a classification problem where the 
classes are simply benign/maligned; In addition to classification 
techniques, as well some machine learning algorithms, we rely 
on feature extraction and selection, which are important steps in 
breast cancer detection and classification. An optimum feature 
set should have effective and discriminating features, while 
mostly reduce the redundancy of features pace to avoid “curse 
of dimensionality” problem. The “curse of dimensionality” 
suggests that the sampling density of the training data is too low 
to promise a meaningful estimation of a high dimensional 
classification function with the available finite number of 
training data. For some advanced classification methods, such as 
artificial neural network and support vector machine, the 
dimension of feature vectors not only highly affects the 
performance of the classification, but also determines the 
training time of the algorithm. Thus, how to extract useful 

 

2021 
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features and make a good selection of the features is a crucial 
task for an AI model. 

 
 

1-A: Incidence 

 19.3 million new cases 

1-B: Mortality 

 9.9 million deaths 

 

Fig. 1 Distribution of Cases and Deaths for the Top Most Common 
Cancers in 20201 

 
BACKGROUND 
Conventional methods of monitoring and diagnosing the 
diseases rely on detecting the presence of particular signal 
features by a human observer. Due to large number of patients in 
intensive care units and the need for continuous observation of 
such conditions, several computer aided-diagnosis (CAD) 

approaches for automated diagnostic systems have been 
developed in the past years to attempt to solve this problem. 
Among these systems, we find2: 
• Image Checker M1000, from the company R2 technology 

(FDA approved in June1998, CE marked). 

• Second Look, from CADX Medical Systems (request for 
approval FDA registered, CE marked). 

• Mammex TR, from Scanis (FDA approval request filed, CE 
marked).  

Such techniques work by transforming the mostly qualitative 
diagnostic criteria into a more objective quantitative feature 
classification problem. Fig.2 illustrates the high-level 
decomposition of automatic detection processes. In certain cases, 
a pre-processing of the data making it possible to highlight the 
sought signs can be used. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 General Diagram of a detection chain for micro calcifications 

in the medical image 

 

Pre-processing 

The approach commonly used in image processing is to work on 
the histogram in order to define a transfer function on the gray 
levels to highlight the details present in the image. Other 
methods have also been proposed such as the use of sharpening 
filters3, or even the removal of the background of the image4. 
The latter approach involves subtracting a low pass filtered 
version of the original image. 

Medical 
image 

Detection 
 
 

Segmentation 
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Marking 

Detection of micro calcifications 

The first class of radiological signs that are looked for are the 
foci of micro calcifications. In fact, since calcium clumps are 
made up of small, contrasting objects, this kind of approach 
seems to have real potential. For example, 5propose to model the 
problem as the detection of Gaussian objects in Markovian noise 
using a filter bank decomposition. Another approach consists in 
carrying out a filtering with a Mexican hat in order to measure 
the contrast of structures of dimension compatible with the core 
of the filter6. Other formalisms are also possible, so we can find 
the use of fuzzy logic for the detection of calcifications 7-8 or even 
approaches using filtering of the dynamics of the image using 
mathematical morphology tools9. 

Opacity detection 

Detecting opacities is a little more complex than for micro 
calcifications, especially because of the variability that exists 
between different types of tumor. 

Extraction of markers 

Detecting areas of over-density is a first step in detecting 
suspicious areas in the breast. Thus10propose to use a 
measurement of detection of over densities by calculating the 
proportion of pixels located around a lesion, which have an 
intensity lower than the minimum of the intensity inside. With 
the same aim of detecting over-densities, other approaches 
attempt to detect contrasting areas using a Mexican hat in the 
same way as for micro calcifications. However, this kind of 
approach does not seem to be well suited to the size of the objects 
to be detected11. Indeed, an opacity is generally much more 
extensive than a micro calcification, with a greater variability in 
terms of shape. 12Proposed the use of mathematical morphology 
tools for the automatic extraction of opacities. 

Segmentation 

It is necessary to extract the form of lesion potentially detected. 
The simplest approaches rely on global image thresholds 13an 
iterative algorithm has been developed for the automatic 
detection of masses in mammograms. 

Decision-making 

Decision-making is generally made after a characterization step. 
From a high-level point of view, we take measurements from the 
results of detection and / or segmentation (depending on whether 
we are working on micro calcifications or opacities) in order to 
subsequently take a decision to using standard classification 
methods. 

Feature extraction 

In the case of micro calcifications, a preliminary characteristic 

extraction step is therefore require14. 

Among these characteristics, one can find those which relate to 
the texture such as the analysis of the neighboring regions, the 
spatial dependence of the levels of gray, the statistics of lengths 
on the levels of gray or the difference of levels of gray15. 
Regarding opacities, the first class of characteristics used is 
based on the shape of the object. We can cite for example the 
compactness, the Ferret report, or the perimeter. An important 
characterization of certain lesions is the presence of spicules at 
the level of their periphery. To consider this, a series of 
measurements to assess how well the lesion is speculated have 
also been proposed. They are essentially based on the analysis of 
the local orientations of the contours. These orientations can for 
example be obtained from a wavelet decomposition16. On the 
same principle, works propose to evaluate the complexity of a 
contour by fractal analysis17. The information provided by the 
association of contour and image content can also be exploited 
by extracting and analyzing a more or less wide band that 
follows the contour of the lesion18. This strip is usually stretched 
to make the contour linear before fractal analysis. 

The information provided by the association of contour and 
image content can also be exploited by extracting and analyzing 
a more or less wide band that follows the contour of the 
lesion .This strip is generally stretched so as to make the outline 
linear before analysis. The analysis is done by extracting 
measurements on this band, such as studying the orientations of 
the contour19. This type of approach is therefore dependent on 
the contour, so the measurements obtained are strongly linked to 
the characteristics of the segmentations considered. For example, 
if you use an outline that follows the spicules well, the spicules 
appear linearly in the band image. 

Classification of anomalies 

The purpose of the classification step is to give the final answer 
on what is detected and considered to be a sign of injury. The 
idea is to combine the information extracted previously to get a 
decision. You can see this in a similar way to what the radiologist 
does to make his decision. 

The classification phase uses the supervised classification tools 
of artificial intelligence. Techniques such as neural networks 
(RN), fuzzy logic (FL), support vector machines (SVM), and 
nearest neighbor type methods are most commonly used. The 
work related to this field is outlined shortly as follows. 

In20, Vikas Chaurasia and Saurabh Pal achieve accuracy of 
(96.84%) using SVM-RBF kernel in Wisconsin Breast Cancer 
(original) datasets. They obtained this result after comparing the 
performance criterion of supervised learning classifiers such as 
Naïve Bayes, SVM-RBF kernel, RBF neural networks.  

In21, Authors show that each algorithm performs in a different 
way depending on the dataset and the features selection, to find 
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the best classifier in breast cancer datasets. SVM using Gaussian 
kernel is the most suited technique for recurrence/non-
recurrence prediction of breast cancer. 

In22, an optimized KNN model is proposed for breast cancer 
prediction using a grid search approach for searching the best 
hyper-parameter. The result shows that the performance 
significantly improves when best hyper parameter or K value is 
used for training the KNN. The performance of the KNN with 
default parameters is 90.10%. Better breast cancer detection 
accuracy is achieved by the KNN using best hyper-parameter or 
K value is chosen using a grid search approach when the 
algorithm is trained and the highest performance achieved using 
hyper-parameter tuning is 94.35%. 

 
EXPERIMENTAL 
In this section, we describe the used dataset as well as the main 
steps of pre-processing and feature extraction, the development 
tools and environment, the proposed approaches and algorithms. 

Dataset 

The real-world databases for this study come from the field of 
pathology, regarding the cytodiagnosis of breast cancer (Fig.3) 
using a technique called fine-needle aspiration of the breast 
lesion (FNAB). 

  

 
Fig .3 FNA result for benign and malignant tumor under the 

microscope 

 

The original dataset was obtained by Dr. William H. Wolberg, 
physician at the University of Wisconsin Hospital at Madison, 
Wisconsin, USA23. 

To create the dataset Dr. Wolberg used fluid samples, taken from 
patients with solid breast masses and an easy-to use graphical 
computer program called Xcyt 7, which is capable of perform 
the analysis of cytological features based on a digital scan. 

The dataset contains 569 instances, with benign 357 (62.75%) 
and 212 (37.25%) malignant cases (as shown in fig.4). 

The Dataset has 10 principal attributes described as following: 

• Radius: mean of distances from center to points on the 
perimeter. 

• Texture: standard deviation of gray-scale values.      

• Perimeter: The total distance between the snake points 
constitutes the nuclear perimeter.  

• Area : Number of pixel on the interior of the snake and 
adding one-half of the pixel in the perimeter.  

• Smoothness: Local variation in radius lengths. 

• Compactness: Perimeter ^2 / area. 

• Concavity: Severity of concave portions of the contour. 

• Concave points: Number of concave portions of the 
contour. 

• Symmetry: The length difference between lines 
perpendicular to the major axis to the cell boundary. 

Fractal dimension: Coastline approximation. A higher value 
corresponds to a less regular contour and thus to a higher 
probability of malignancy. 

For each of the 10 features, there are three numerical variables, 
representing the mean, the standard deviation and the “worst” 
(mean of three largest values). 

As well to the previous features, we find in the studied data set: 
The very first feature is the patient ID. For building a predictive 
model, this feature is irrelevant and therefore is discarded. The 
second variable, diagnosis, is binary and categorical with the 
values B (benign) and M (malignant). 

 

 

Fig.4 Standard dataset statistics 

 

Data availability: The Wisconsin Diagnostic Breast Cancer 
dataset was obtained from the UCI machine-learning depository 
(available at: http://archive.ics.uci.edu/ml). 

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
http://archive.ics.uci.edu/ml
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Development Environment 

In this section, we present the different frameworks used to 
develop and execute our proposed models and approaches. 

Python 

Python is an interpreted high-level programming language 
released in 1991 by Guido van Rossum. It is widely used in all 
types of disciplines such as general programming, web 
development, software development, data analysis and machine 
learning due to its multi paradigm, which include functional, 
procedural, object-oriented programming24. 

Jupyter 

The Jupyter Notebook is an open source application that enables 
users to create interactive, shareable notebooks that contain live 
code, equations, visualizations, and text25. 

Pandas 

Pandas is a Python package providing fast, flexible, and 
expressive data structures designed to make working with 
“relational” or “labeled” data both easy and intuitive. It aims to 
be the fundamental high-level building block for doing practical, 
real world data analysis in Python26. 

Sklearn 

Scikit-learn is a free Python library dedicated to machine 
learning. It is intended to connect to the Python NumPy and 
SciPy computer and logical libraries. Simple and successful 
devices for data mining and data analysis. It is open to all and 
reusable in different contexts27. 

Matplotlib 

Matplotlib is a python 2D plotting library that produces 
publication quality figures in a variety of hardcopy formats and 
interactive environments across platforms. Matplotlib can be 
used in Python scripts, the Python and IPython shells, the Jupyter 
notebook, web application servers, and four graphical user 
interface toolkits. 

Seaborne 

Statistical data visualization is a Python visualization library 
based on Matplotlib. It provides a high-level interface for 
drawing attractive statistical graphics.  

Time 

The Python time module provides many ways of representing 
time in code, such as objects, numbers, and strings. It also 
provides functionality other than representing time, like waiting 
during code execution and measuring the efficiency of your code. 

Algorithms 

We used five different types of classification models: Support 

Vector Machines, Random forest, Naïve-Bayes, Logistic 
regression and k-Nearest Neighbor.  

Our choice of models for this study is partially motivated by the 
list of benchmark models outlined in the previous section. What 
follows is a short description of these classification model types 
and their specific implementations for this research.  

Logistic-Regression 

The application of the Logistic regression model has featured 
prominently in many domains such as the biological sciences. 
The Logistic regression algorithm is used when the objective is 
to classify data items into categories. Usually in logistic 
regression, the target variable is binary, which means that it only 
contains data classified as 1 or 0, which in our case refers to a 
patient that is positive or negative for diabetes. The purpose of 
our logistic regression algorithm is to find the best fit that is 
diagnostically reasonable to describe the relationship between 
our target variable and the predictor variables. 

Support Vector Machines 

Support Vector Machines is a widely used as supervised learning 
technique that is remarkable for being practical and theoretically 
sound, simultaneously. The approach of SVM is rooted in the 
field of statistical learning theory, and is systematic: e.g., training 
a SVM has a unique solution (since it involves optimization of a 
concave function). 

Random Forest 

Random forest is an ensemble method that creates many 
independent decision tree classifiers trained on different 
bootstrapped resamples of training data and then allows them to 
‘vote’ on unseen data, which is an idea behind bagging. This trick 
allows dealing with overfitting that regular decision trees are 
prone to, by reducing variance of the model and therefore 
increasing its performance. 

Naïve-Bayes 

Naive Bayes classifier uses training data and Bayes’ theorem to 
assign a probability that an unseen data point belongs to each 
possible class. This classifier is very fast and simple, but it 
usually provides poor classification performance, partially 
because of its assumption of feature independence, which is very 
strong and is seldom true in real life applications. 

K-Nearest Neighbor 

The K-Nearest Neighbor is a learning method bases on instances 
that does not required a learning phase it is one of the most used 
algorithms in machine learning. The training sample, associated 
with a distance function and the choice function of the class 
based on the classes of nearest neighbors is the model developed. 
Before classifying a new element, we must compare it to other 
elements using a similarity measure. Its k-nearest neighbors are 
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then considered, the class that appears most among the neighbors 
is assigned to the element to be classified. The neighbors are 
weighted by the distance that separate it to the new elements to 
classify. 

Techniques 

In this section, we discuss some of the accompanying techniques 
of machine learning algorithms in building an IA model. 

Correlation  

Correlation is a statistical term, which in common usage refers 
to how close two variables are to having a linear relationship 
with each other. Features with high correlation are more linearly 
dependent and hence have almost the same effect on the 
dependent variable. Therefore, when two features a have high 
correlation, we can drop one of themes. 

Cross-validation 

Cross-validation is one of the most important techniques used 
for evaluate machine learning classifier. The classifier’s 
evaluation is most often based on prediction model accuracy. 
The K-fold cross validation algorithm works as follows (Fig. 5). 

The training set is divided into mutually exclusive and equal-
sized subsets and for each subset; the classifier is trained on the 
union of all the other subsets. The average of the error rate of 
each subset is therefore an estimate of the classifier error rate28.  

Fig. 5 Crosse validation 
 

Measures for performance evaluation 

Confusion matrix is a way to summarize classifier performance. 
Thus, we used it to measure our models performance. Figure 6 
shows a basic representation of a confusion matrix. 

 

 
 
 
 
 
 
 
 

 

 

Fig. 6 The confusion matrix 

 

A confusion matrix for actual and predicted class is formed 
comprising of TP, FP, TN, and FN to evaluate the parameter. 
The significance of the terms is given below. 

True positive: Sick people correctly diagnosed as sick TP. 

False positive: Healthy people incorrectly identified as sick FP. 

True negative: Healthy people correctly identified as healthy 
TN. 

False negative: Sick people incorrectly identified as healthy FN. 

In this task, we focus on the accuracy and medical testing to 
evaluate the performance of the proposed system. 

Medical Testing 

The act of diagnosing a medical condition is extremely involved. 
When done right, the process is a complex blend of clinical 
evidence, data, probabilistic rationale and pattern matching, with 
the consequences of different courses of action kept in mind 
from a cost and patient care perspective. When done poorly, a 
range of tests is performed (often without justification), and 
conclusions drawn on scant evidence. 

Medical tests are designed to detect, diagnose or monitor disease 
in a patient, and take on many different formats, including 
clinical examinations, imaging, biopsies, genetic analysis, and 
blood tests. Beyond their cost and usability, the most important 
question for any test is its effectiveness. In other words, how 
good is a particular test at detecting, diagnosing or monitoring 
the condition in question? 

Diagnostic tests are often sold, marketed, cited and used 
with sensitivity and specificity as the headline metrics. 
Sensitivity and specificity are defined as:  

• Sensitivity: 

Sensitivity is the probability that a test is correctly identify a 
person with the disease when in fact, they do have the disease or 
sensitivity is the system’s ability in truly identifying the sick 
people. It can be estimated as:  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

               (1) 
• Specificity: 

Specificity is the probability that a test is correctly identify a 
person whom does not have the disease when in fact they are 
disease free. Specificity is calculated by the following formula: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑃𝑃

               (2) 

Notice the denominators. For sensitivity, we have 'true positives', 
which are of course positives, and 'false negatives', which are 
also positives. Therefore, sensitivity only deals with positive 
cases, and the logic is the same with specificity for negative 
cases. The result is that sensitivity is a measure of the probability 
of getting a positive result out of all the positive cases, and that 
specificity is a measure of the probability of getting a negative 
result out of all the negative cases. Another way of phrasing this 
is that sensitivity is the probability of getting a positive result, 
given that you have the disease. Note that in practice, we are 
interested in the opposite of this, namely the probability of 
having the disease, given a positive test result (and similarly for 
not having the disease). For these measures, we use the positive 
predictive value (PPV) and negative predictive value (NPV), 
respectively: 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

                  (3) 

𝑁𝑁𝑃𝑃𝑃𝑃 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹

                   (4) 

 

Ideally, Systems that rely on medical image dataset should have 
high sensitivity and high specificity, but usually there are some 
tradeoffs between sensitivity and specificity. 

Figure  2  shows  the  heat-map  analysis  of  the  nine 
attributes  to  show  their  correlation.  The colors show 
how one parameter is associated with another parameter through 
the colors displayed. Lighter colors show that two attributes are 
highly correlated, white being the most correlated with a value 
of 1.00. Darker colors, on the other hand, show that two 
parameters are poorly correlated 

A medical image system might have a high sensitivity but 
lower specificity and vice versa, this is due to limitations on 
hardware manufacturing and available materials, which affect 
the performance of the system diversely. 

• Accuracy: 

Accuracy shows the performance of the diagnostic system is 
determined based on the combination of sensitivity and 
specificity and is calculated by the following formula:  

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝐹𝐹
𝑇𝑇𝑃𝑃+𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

           (5) 

 

Building models 

Our project is broken down into the following tow subtasks:  

Sub-task A: using all the features 

This section presents the methodology that we follow to build 
our machine learning models using all the features in Wisconsin 
breast cancer dataset, below are the steps to follow. 

• Loading the data 

• Removing the unwanted columns 

Before feeding the data into the machine learning models, a pre-
processing is applied. The aim of pre-processing is to reduce 
dimensions and clean up the data from noisy and unwanted 
columns. This step can improve the accuracy of classification. 

• Encoding the categorical variable 

Machines, cannot understand the raw text. Therefore, we need to 
convert diagnostic column into numbers (0, 1). This variable is 
the label for the supervised learning problem as defined above. 

• Splitting dataset 

In order to form the confusion matrix, the dataset was divided 
into training set and testing set, 80% of the data is used to train 
the system and the remaining 20% for testing 

• Training machine learning models 

The final step in the classification task is to train the machine 
learning classifier, using the features created in the previous step 
and using the 10-fold validation. Here, five supervised learning 
algorithms are utilized to build models to perform classification, 
namely, logistic Regression, Random Forest, Naïve-Bayes, 
Support vector machine, and K-Nearest Neighbor.  

Sub-task B: features selecting based on correlation 

In this subsection, we repeat all the above steps and we explore 
our most prominent and most important step in our research, 
which is “features Selecting based on correlation “where it is in 
the penultimate rank in terms of implementation. 

• Selecting features based on correlation 

Often when we get a dataset, we might find a plethora of 
features. Not all of them might be useful in building a machine-
learning model to make the necessary prediction.  

Using some of the features might even make the predictions 
worse. Therefore, feature selection plays a huge role in building 
a machine-learning model. In this step, we explore correlation 
matrix to select the right features: 

First, we create the correlation matrix (Fig.7). 
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Fig.7 Correlation matrix heatmap  

 

Next, we drop variables that have a very low correlation with the 
target. Then we rank and select the top 15 features that correlate 
with the diagnosis column. 

Finally we compare every two features separately then we drop 
one of the two features that have a correlation higher than 0.9 
(Fig.8). (Between the two ends of the comparison, we drop the 
feature that is least correlated to the target column). 

 

 
Fig.8 Correlation matrix heatmap (without irrelevant features) 

RESULTS AND DISCUSSION 
Throughout the previous section, we have presented the different 
steps of our work development. This section describes all the 
results obtained from the study and introduces the best 
performance according to various performance metrics. First 
performance was obtained by using all features; Second 
performance was obtained by using features selection. 

Result for Sub-task A: using all the features 

After evaluating our five algorithms (Logistic Regression, SVM, 
Random Forests, NB and KNN), we summarized the results in 
the Table 1. 

Table 1. Result of sub-task A 

 LR SVM RF NB KNN 

Accuracy (%) 90,78 86,83 94,74 94,07 88,37 

Sensitivity (%) 91,04 98,51 97,01 94,03 95,52 

Specificity (%) 91,49 72,34 91,49 85,11 85,11 

PPV (%) 93,85 83,54 94,2 90 90,14 

NPV (%) 87,76 97,14 95,56 90,91 93,02 

Time (Second) 0,335 0,076 1,688 1,456 0,058 

 

From the Table 1, it can be seen that the best accuracy achieved 
is 94.74 % by Random Forest, the last row of Table 1 shows the 
time required to build the classification algorithms.  

The results show that KNN achieved less timing for building a 
model. In addition, SVM require more time, but it shows that his 
training time is much less than other classification algorithms. 

Result for Sub-task B: features selection 

In this subsection, we show the results of applying classifiers 
using the correlation matrix to choose the best features on dataset 
(Table.2) and we introduce the best performance according to 
various performance metrics. 

Table 2. Result of sub-task B 

 LR SVM RF NB KNN 

Accuracy (%) 94,74 91 97,59 96,5 89,66 

Sensitivity (%) 95,52 98,51 98,51 94,03 97,01 

Specificity (%) 97,87 85,11 97,87 91,49 95,74 

PPV (%) 98,46 90,41 98,51 94,03 97,01 

NPV (%) 93,88 97,56 97,87 91,49 95,74 

Time (Second) 0,329 0,073 1,593 1,453 0,07 

 

From the Table 2 it can be seen that the best accuracy achieved 
is 97.59 % by Random Forest, also it is the best one for the other 
metrics, except for training time.  

Results summary 

To conclude, figures below (9 and 10) show a comparison 
between the results obtained previously in terms of training time 
and accuracies. 
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Fig.9. Accuracies Comparisons  

 

 
Fig.10 Training Time Comparisons 

 

We compare results of different methods, it is clear that when we 
used features selection (correlation matrix) we get best results in 
all methods. As we noticed an improvement in the performance 
of all classifiers especially the random forest model, which 
overtake the 97% threshold in most performance measures. 

While the KNN model remained the fastest in terms of training 
time, we note that our best model in terms of accuracy (RF) took 
more time to train and vice versa. 

All these improvement results are due to the reduction of high 
dimensional correlated features to low dimensional features. 
Dimension reduction consists of projecting all data from the 
original space onto a new space of reduced dimensions, which is 
a commonly used step in machine learning, especially when 
faced with very high dimensional features space. 

The main reasons for using dimension reduction in machine 
learning are as follows: 

• Improve the performance of the prediction, to improve the 
learning efficiency. 

• Provide faster predictors possibly using less information 
on the original data. 

• Reduce the complexity of the results produced and allow a 
better understanding of the classification process. 

 

CONCLUSIONS 
All the work we did during this challenge showed the benefit of 
using Feature selection technics in machine learning Algorithm. 
The most well-known feature selection technique is correlation 
matrix; it is good at reducing the high dimensional correlated 
features into low dimensional features. 

The results of classifying the data obtained by the approach were 
very promising and the best model as found in our analysis is a 
random forest model with using of correlation matrix to extract 
the best features, it gives a prediction accuracy equal to 97, 59%.  
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ABSTRACT: The increase of computing power, the development of mathematical algorithms and the growth of data 
encouraged the use of Artificial Intelligence (AI) in different fields such as industry, medicine, robotics and social media. Indeed, 
AI becomes more and more present in our everyday lives. Machine Learning (ML) is a subunit of AI that allows machines to 
learn from past data to provide accurate results. Deep learning (DL) is a form of ML that trains a model to perform human-like 
tasks such as speech recognition and image identification. 
Many applications of ML and DL are present in the field of Radiation Oncology. AI algorithms allow optimization and automation 
of the radiotherapy workflow. The impact of AI tools is important in terms of efficiency and consistency in treatment. 
In this paper, we present the different AI methods that can be applied to radiation therapy. We give recent examples related to 
each step of the radiation therapy workflow where different anatomic locations and imaging modalities are considered. A 
particular attention is devoted to automatic segmentation. 
Keywords: Artificial intelligence; Machine learning; Deep learning; Radiation therapy; Radiotherapy. 

 

INTRODUCTION 
Artificial intelligence (AI) is a branch of computer science where 
smart machines are capable to display human-like capabilities 
and thus performing tasks that typically require human 
intelligence such as learning, planning and reasoning. These 
tasks can be performed using machines without being explicitly 
instructed. Three components are needed to achieve this goal: 
powerful computers, advanced AI algorithms and data. Machine 
Learning (ML) is a part of AI that allows a machine to be capable 
to learn and improve from data without being explicitly 
programmed. By using these data, the programs can thus learn 
for themselves. Deep learning (DL) is a specialized subset of 
machine learning. DL algorithms are based on the use of neural 
networks which are composed of layers. These networks, called 
artificial neural networks, attempt to mimic the behavior of the 
human brain. Thus, DL can learn from large amounts of data in  
order to classify, infer and predict the outcome. By increasing the 
data size, the performance of the algorithms is adaptively 
improved.  
AI has numerous and varied applications, in particular with the  

 
use of a multidisciplinary approach based on computer science 
and mathematics. AI is introduced in the financial field1,2 (to 
evaluate the risks of different financial operations), robotics3, 
industrial sector4 (solutions to deal with production problems) 
and many other fields. 

Recently, AI has been widely used in the medical field. This 
is due to the important advances in computing performance, and 
also to the growth and sharing of data. Indeed, in the medical field, 
AI can contribute to accelerate the drug development, to improve 
diagnosis and for remote consultations5,6. In this study, we 
present the applications of AI that are used in the different steps 
of the radiotherapy workflow. Particular interest is devoted to 
automatic segmentation of medical images where some examples 
are given. 
 
 
 
 
 

 

2021 

https://www.mathworks.com/discovery/deep-learning.html
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APPLICATIONS OF ARTIFICIAL 

INTELLIGENCE IN RADIATION 

THERAPY  

Radiation therapy (RT) is used as a local cancer treatment. More 
than half of all people with cancer receive RT as part of their 
cancer treatment7. In RT treatment, beams of electrons, photons 
or ions, with a given energy, are used to kill cancer cells. To 
ensure an efficient RT treatment, precise targeting of the tumour 
should be performed by the oncologist. Moreover, organs at risk 
(OARs) should be protected during irradiation.  

The number of scientific publications on applications of AI in RT 
is constantly increasing. Using the following search phrases: 
“Machine Learning” and (“radiation oncology” or radiotherapy) 
and “Deep Learning” and (“radiation oncology” or radiotherapy) 
on the PubMed library, we obtain the results presented in figure 
1. This figure shows clearly the rapid augmentation of the 
corresponding publications number over time. As an example, 
the number of these publications has been multiplied by a factor 
F, where F=57 corresponds to ML and F=177.5 to DL during the 
period (2013-2020). 

 
Fig. 1 Yearly published articles corresponding to applications of ML 

and DL in RT, until August 2021 (PubMed, see text for details). 

 

ML and DL models allow automation and optimization of the RT 
workflow which is represented in figure 2 with its different steps: 
patient assessment, simulation, treatment planning, quality 
assurance (QA) and treatment delivery. In the following sections, 
we present some examples of the use of AI tools in the RT 
workflow. 

 

 
Fig. 2 Different steps of a radiotherapy workflow. 

 
Patient assessment 

Patient evaluation 

The first step of the RT workflow corresponds to the clinical 
evaluation of the patient by the oncologist. During this step, a 
physical examination of the patient is performed with a review of 
his medical history. A treatment plan, which takes into account 
all these data, is then proposed to the patient. This step can be 
significantly simplified with the use of AI algorithms. Indeed, 
data extraction and analysis can be performed with AI tools 
which can help as an important decision support for doctors8. AI 
tools are also very helpful to automate structured documentation 
about electronic health records of patients9. 

Dose prescription 

The dose of radiation to be administered to the patient should be 
determined and prescribed by the radiation oncologist. The 
treatment plan takes into account the tumor shape and the 
surrounding healthy organs. Using AI tools, it is possible to offer 
personalized treatment for each patient with an optimal dose 
prescription10. 

Simulation 
Image registration 

Registration corresponds to the overlaying of medical images 
that have been obtained of the same region shot from different 
imaging modalities (e.g. computer tomography (CT) and 
magnetic resonance (MR)). This process can improve 
significantly the precision of the diagnostic by providing 
additional information about the anatomy of the explored region 
of the patient11. Registration of medical images performed with 
high accuracy allows a clear segmentation of the planning target 
volume (PTV) and the organs at risk (OARs). Thus, registration 
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of medical images constitutes an important step of the RT 
workflow. 

Commercial mathematical algorithms are available for medical 
images registration, but they are used in particular cases related 
to solving problems specific to a given modality. Moreover, the 
obtained results with these algorithms are sensitive to artifacts 
that can be present in medical images. It has been shown that 
registration performed using AI algorithms leads to better 
performance12. In addition, these algorithms can be applied for 
different imaging modalities12,13 and they appear to mitigate the 
effects of artifacts14,15. 

Han et al. developed a DL-based model for deformable CT-
CBCT (Cone Beam Computed Tomography) registration for 
radiation treatment16 (pancreatic cancer). This model was 
compared to two intensity-based algorithms. These authors 
showed that the proposed deep network model improved 
segmentation accuracy compared to the other models with a 
sensitive reduction in processing time. 

Koen et al. proposed an automatic supervised method, based on 
a convolutional neural network, to estimate registration errors in 
the case of nonlinear registration of 3D images17. It has been 
shown that this method can be trained to robustly estimate 
registration errors in a predetermined range, with subvoxel 
accuracy. 

Contouring 

Before starting the radiotherapy planning step, the radiotherapist 
should segment accurately the target volumes (TV) and the 
OARs. This operation is an important part of the radiotherapy 
workflow and constitutes one of the most time-consuming tasks. 
The precision of the delineation has an impact on the obtained 
results: in case of an incorrect segmentation of the tumor, we can 
have under-dosing or overdosing. In such situations, there is a 
decreased likelihood of controlling the tumor or a significant risk 
of toxicity. Furthermore, the segmentation of organs is also 
subject to inter-observer variation18,19. It is possible that the same 
radiotherapist may not be able to reproduce his own segmentation 
very well20-22; hence the need to use automatic segmentation of 
medical images. First, semi-automatic methods, based essentially 
on the ‘Atlas data’ were proposed23. In this case, one should 
match the image to be segmented, to one of the atlas data images. 
This operation is performed using registration techniques. 
However, it has been shown that atlas-based methods are 
sensitive to the atlas-data choice24 and also to the used 
registration techniques. 

At present, several researchers have applied AI models to 
delineate OARs and target volumes for different cases as head 
and neck tumors, lung and breast cancers. AI-based auto-
segmentation algorithms have been shown to improve 
significantly this operation for different imaging modalities: CT, 

CBCT25 (Cone Beam Computed Tomography), PET26 (Positron 
Emission Tomography) and MRI27 (Magnetic Resonance 
Imaging). 

In Ref28, an algorithm, called LL-CNN (lifelong learning-based 
convolutional neural network) was presented. This algorithm was 
used for automatic segmentation of head and neck organs-at-risk 
where good results were obtained. In another work25, a novel DL 
network, called BibNet, was used to segment bladder, prostate, 
rectum and seminal vesicles from CT and cone beam CT scans. 
This model was scored either equally good (for prostate and 
seminal vesicles) or better (for bladder and rectum) than the 
structures from routine clinical practice. 

Treatment planning 

After the segmentation of tumor and OARs and the dose 
prescription, the optimal treatment plan for the patient should be 
generated by achieving sufficient tumor coverage and avoiding 
the surrounding tissues. This step is considered as a problem of 
optimization where many parameters (e.g. positioning and 
machine settings) are to be determined to ensure a better 
management of the patient's cancer.  

One of the most important aspects of AI-based treatment 
planning corresponds to the generation of plans and the 
prediction of an acceptable dose distribution for individual 
patients based on their anatomy. Using DL algorithms, optimal 
dose distributions have been predicted allowing acceleration of 
dose calculations29. 

It was shown, in Ref30, that the presented DL method can predict 
clinically acceptable dose distributions. There is no statistically 
significant difference between DL prediction and real clinical 
plan for all clinically relevant dose volume histogram (DVH) 
indices, except brainstem, right and left lens. This DL-based 
method constitutes a promising approach to prepare automated 
treatment planning in the future.  

In Ref31, a comparison of automatically generated plans (AP) to 
plans generated manually (MP) was performed showing the auto 
planning method to be a robust clinical tool. This study 
concerned the following sites: head-neck, high-risk prostate and 
endometrial cancer. AP plans were judged of equal or better 
quality compared to MP plans in more than 90% of the 
evaluations concerning dosimetric results. By considering 
dosimetric and clinical advantages, this auto planning method 
can generate high quality treatment plans for VMAT (Volumetric 
modulated arc therapy) according to institutional specific 
planning protocols. 

QA and treatment delivery 

Quality assurance 

Intensity modulated radiation therapy (IMRT) and Volumetric-
arc radiation therapy (VMAT) are two techniques used to deliver 
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high-precision radiotherapy. In order to verify the accuracy of the 
dose calculation and the delivery system, it is important to 
perform patient-specific quality assurance before delivering the 
calculated dose to the patient. The precedent procedure, which 
consists to measure the dose in a phantom, is expensive and time 
consuming. Recently, ML and DL algorithms have been 
developed to predict patient-specific QA results32-34. Moreover, 
many models have been proposed to detect errors. Different 
errors have been investigated as the detection of multileaf 
collimator (MLC) positional errors in the case of static beam 
IMRT dosimetry QA35. In another paper36, a DL model has been 
used to detect errors of MLC transmission and effective source 
size for static beam IMRT QA dosimetry. 

Treatment delivery 

Patients treated with RT should attend the radiation oncology 
department several times and sometimes, they have to wait for 
long times. These long waiting times can affect negatively the 
patients. AI tools can be used in order to organize the different 
steps of the RT treatment which could further optimize 
appointment scheduling10. 

Furthermore, kV-CBCT was implemented to verify the 
patient's positioning on the treatment table before the irradiation 
session. However, images provided by CBCT have a much lower 
quality than the planning CT images. In order to ensure more 
accurate positioning of patients for treatment, AI tools were used 
to improve the quality of CBCT image37. 

Moreover, in the case of the image-guided RT (IGRT), we have 
the incorporation of imaging techniques as the on-board MRI and 
optical surface imaging. The patient motions during the treatment 
(respiration and/or digestion) should be taken into account in the 
prediction of the radiation dose to be delivered to the patient. In 
Ref38, a DL model was developed for the external respiration 
signal prediction for RT treatment. This study showed the 
potential of this DL algorithm to predict the respiratory signal. 

CONCLUSIONS 
Several papers have been published on applications of AI tools in 
the radiotherapy workflow. These studies clearly explained the 
important contribution of AI models to ameliorate RT treatment 
in terms of efficiency and consistency. Using ML and DL 
algorithms, gains in time during segmentation and planning are 
performed. Other benefits are also obtained when performing QA 
and delivering treatment. 

However, significant challenges and problems remain before the 
implementation of these models in the clinical setting. Moreover, 
large datasets should be prepared and shared between centers to 
train AI models.  
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ABSTRACT: The image can be noised during the acquisition and transmission despite the most advanced development 
of vision systems. Thus, the preprocessing of digital image is required to suppress as much as possible the parasite degradation, 
while at the same time preserving the maximum amount of relevant information in order to obtain a better restitution of the image. 
To cope with these challenges, we propose an algorithm that consists of two fundamental stages, feature extraction and image 
denoising. The first step consists of using the Schur decomposition to extract the main features and dissimilate the small features 
from the large ones. The second one permits to denoise these features by an adaptive wiener filter, such that, the small features 
are smoothed with 3x3 wiener filter mask and the large features are enhanced by 5x5 wiener filter mask in order to increase the 
recognition rate. The performance of the proposed method is demonstrated using the ORL database and two objective metrics 
PSNR and SSIM. The experiments show that the proposed method gives better results than state of the art classical machine 
learning competitors. 
Keywords: Machine learning; Schur decomposition; Image denoising; Wiener filter; Face recognition. 

 

 

INTRODUCTION 
Face recognition is a challenging problem that has been widely 
studied in the field of pattern recognition and computer vision. 
Nowadays, face recognition has made great progress for various 
potential applications in security and emergency1,2,3, law 
enforcement4, video surveillance 5,6, and access control7, etc. 
Most of these methods failed to handle the various degradations 
under certain uncontrolled conditions, including varying lighting, 
poses, facial expressions, and noise, where the performance of 
face recognition system would drop significantly. Several works 
have been carried out towards the illumination, pose, and noise 
problems and also achieve good results8, 9, 10.  

Existing research studied the effects of face image denoising and 
enhancement methods on the face recognition performance. In11, 
the authors propose an algorithm for denoising the degraded face 
image sequence in the principal component analysis (PCA) 
domain for recognizing this face. They first apply a temporal 

filter that performs motion compensation combined with a 
weighted average filter, then an adaptive spatial filter realized by 
PCA transformation.  

In the work12, the authors show that the solution of denoising 
process using the autoencoder networks based on the ORL face 
database. The proposed method can support face recognition 
systems designed for use in an outdoor environment as the 
preprocessing stage and it can provide the effective results after 
training process. 

The authors in13 propose a carefully designed deep neural 
network coined noise-resistant network (NR-Network) for face 
recognition under noise. They present a multi-input structure in 
the final fully connected layer of the proposed NR-Network to 
extract a multi-scale and more discriminative feature from the 
input image. To address the noise problems, we propose in this 
paper a novel method to recognize the degraded face images. 
Since the various features contained in image are different, it 
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may manipulate these features differently. Therefore, the 
proposed approach uses the schur decomposition to separate the 
small features from the large ones. The Schur decomposition 
method is widely used for face recognition14-15 for its numerical 
stability16. The face recognition approach proposed in 17 uses the 
schur decomposition with PCA and their experiments showed 
the discriminate power of the schur decomposition for face 
recognition.  

EXPERIMENTAL 
Proposed method 

Most of face recognition methods suffer from degradations such 
as noise and blur that can affected image.  

To address these problems, we have proposed a method to 
recognize the noised face images.  

The structures contained in an image are different, so, it is 
appropriate to treat them differently. The diagram of the 
proposed method is shown in the figure (Fig1). 

The main tasks of the proposed noisy facial image recognition 
algorithm are the following: 

Features extraction: we utilize the schur decomposition for 
computing schurvalues and schurvectors that are used to 
separate the small features from the large ones. To show the 
efficiency of this method for face representation, we compared 
it with the learning methods that are in the same context: 
Eigenfaces18, Fisherfaces18 and Laplacianfaces19.  

Features denoising: the used filter called adaptive wiener filter 
(AW filter) is adapted according to each feature (small and large) 
where noise is removed smoothly in the small features for 
preserving the details and edges using 3x3 wiener filter mask, 
and it is removed strongly in the large features using 5x5 wiener 
filter mask. 

Features classification: the face recognition is performed using 
the Nearest Neighbors classifier with Euclidienne distance for 
the four machine learning methods. It is the standard method for 
classification and often used in many pattern recognition 
applications. 

Test of the experimental results 
The proposed algorithm is tested on the ORL database20. These 
images are corrupted by white additive Gaussian noise with 
various levels of standard deviation σ= 5, 10, 15, 20, 25 and 30. 
They are denoised with an adaptive wiener filter (AW filter by 
3x3 & 5x5) for the following machine learning methods used for 
features extraction: Eigenfaces, Fisherfaces, Laplacianfaces as 
well as the proposed method.  

The performance of the proposed algorithm for filtering noised 
facial images (NF image) is evaluated using the PSNR and the 
SSIM21, which provided the quantitative quality evaluation of 
results.  

RESULTS AND DISCUSSION 
We show in table 1 and 2 the quality in terms of PSNR and SSIM 
of the denoised images using the proposed method. 

 

Table 1 PSNR of images treated by different algorithms with 

different Gaussian noise levels 

σ 5 10 15 20 25 30 

NF image 29.73 27.06 25.82 23.76 22.03 19.40 

AW filter+ 

Eigenfaces 
30.45 30.74 28.62 26.44 23.82 20.95 

proposed 

method 
35.52 34.24 33.75 31.55 29.21 26.78 

AW filter+ 

Fisherface 
34.10 33.56 31.60 29.45 27.20 26.22 

AW filter+ 

Laplacianfacs 
35.12 33.85 32.35 30.10 29.05 26.20 

 

 

Table 2 SSIM of images treated by different algorithms with 

different Gaussian noise levels 

σ 5 10 15 20 25 30 

NF image 0.957 0.954 0.948 0.936 0.897 0.865 

AW filter+ 

Eigenfaces 
0.970 0.968 0.962 0.957 0.934 0.917 

proposed 

method 
0.975 0.972 0.967 0.963 0.946 0.941 

AW filter+ 

Fisherface 
0.971 0.966 0.961 0.955 0.947 0.937 

AW filter+ 

Laplacianfacs 
0.970 0.968 0.963 0.948 0.934 0.931 

 

Experimental results demonstrate a significant improvement of 
the proposed algorithm over the tested ones, due to its ability to 
separate the various features effectively and to perform an 
adaptive denoising process for each feature in the facial image. 
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Table 3 Recognition rate of facial image attracted with Gaussian 

noise σ=2 

Methods Recognition rates 

AW filter+Eigenfaces 87.9 

proposed method 91.8 

AW filter+Fisherfaces 88.2 

AW filter+Laplacianfaces 89.7 

 

The face recognition rates are shown in table above and from 
that, it is obvious that Schurfaces outperforms the other 
approaches in the same context. So, the denoised image with 
good quality leads to a better recognition rate. 

 

CONCLUSIONS 
Image denoising is a preprocessing step in the face recognition 
field. In this work, we developed a denoised facial image 
algorithm for face recognition, where the schur decomposition is 
used to learning the subspace and to dissimilate the small 
features from the large ones. Then, each feature is filtered by an 
adaptive wiener filter, so that, the small features are smoothed 
with 3x3 wiener filter mask, and the large features are enhanced 
with 5x5 wiener filter . The recognition process uses the Nearest 
Neighbors classifier to determine the identity of query facial 
image. 

The experimental results show the performance of machine 
learning in biometric systems that the Schurfaces has the high 
discriminate power and the denoising algorithm has achieved 
higher noise removal gain as compared with the tested 
algorithms. The quantitative metrics (PSNR and SSIM) and the 
recognition rate demonstrate theses results. In future, we will 
focus on deep subspace learning techniques to improve face 
recognition accuracy. 
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Fig. 1 Diagram of proposed method 
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ABSTRACT:  Alzheimer's disease has taken a large healthcare concern nowadays, with about 50 million people living 
with the disease in 2020. The development of the disease can be slowed down by early diagnose. Brain MRI images have been 
exploited for early diagnosing due to their availability of a set disease related features. In this work, a deep learning model was 
proposed to classify four (4) early stages of Alzheimer's disease. Our model reached an accuracy of 95.66%. 
Keywords: Alzheimer's disease; Artificial intelligence; Medical imaging; Magnetic Resonance Imaging (MRI); Deep learning; 
Convolutional neural networks.  

 
INTRODUCTION 
Alzheimer's disease (AD), the most prevalent form of dementia, 
is a significant healthcare concern in the 21st century. According 
to the AD international federation, the number of people living 
with this disease has reached about 50 million in 2020. Efforts 
have been undertaken to create early detection techniques, 
particularly at pre-symptomatic phases, to limit or prevent 
disease development. Neuroimaging solutions including 
Magnetic Resonance Imaging (MRI) and Positron Emission 
Tomography (PET) have been exploited to detect early cases of 
Alzheimer's dementia. With the development of artificial 
intelligence techniques, brain images have been collected and 
exploited to classify several diseases, including Alzheimer's 
using deep learning and transfer learning techniques. Kanghan O. 
et al.1 proposed a volumetric convolutional neural network 
(CNN) model for four binary classification tasks AD vs. normal 
control (NC), progressive mild cognitive impairment (pMCI) vs. 
NC, stable mild cognitive impairment (sMCI) vs. NC and pMCI 
vs. sMCI using ADNI dataset, a convolutional autoencoder based 
unsupervised learning is used for AD vs. NC, a supervised 
transfer learning for pMCI vs. sMCI classification task. After, a 
gradient-based visualization method that approximates the 
spatial influence of the CNN model’s decision was applied to 
detect the most important biomarkers related to AD and pMCI.   

 

 

As results, the classification rate of AD is reached at 86.60% and 
pMCI at 73.95%. Silvia B. et al.2 used a convolutional  neural 
networks (CNNs) on 3D T1-weighted images from ADNI and 
privately collected subjects to diagnose AD and mild cognitive 
impairment who will convert to AD (c-MCI), healthy controls  
(HC) and stable -MCI (s-MCI). AD vs HC classification test 
using ADNI dataset only achieved 99% and the combined ADNI 
+ non-ADNI dataset reached 98%. The accuracy of CNNs in 
distinguishing c-MCI patients from s-MCI patients was up to 
75%. Iago Richard R. S. et al.3-4, tried to distinguish Alzheimer's 
patients from those who are healthy. Alzheimer's Disease Interval 
Minimum Resonance (MIRIAD) database was utilized to 
validate the suggested technique. Convolution layers in the 
proposed CNN architecture are designed to extract the best 
features from the chosen region. Selected features are then placed 
in a vector for learning and pattern detection by another classifier 
in the proposed architecture's final layer. Finally, the data is 
partitioned using the 10-fold cross-validation technique and 
trained with different parameters using the random forest, 
support vector machine (SVM), and k-nearest neighbor (k-NN) 
algorithms. For these methods, the precision results are 0.8832, 
0.9607, and 0.8745, respectively.  Another study from J. 
Venugopalan et al. in reference 55, proposed multimodal deep 
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learning models, stacked denoising auto-encoders for feature 
extraction from clinical and genetic data and 3D-convolutional 
neural networks (CNNs) for imaging data. The proposed method 
outperforms baseline models. T. Anh Tuan et al.6 proposed an 
efficient diagnosing system from brain MRI scans, divided into 
two phases: segmentation and classification. Segmentation is 
performed by a model that combines Gaussian Mixture Model 
(GMM) and Convolutional Neural Network (CNN) while the 
classification is done by combining Extreme Gradient Boosting 
(XGBoost) and Support Vector Machine (SVM).  In this work, 
we will propose a new convolutional neural network (CNN) 
architecture for early classifying AD stages: Moderate-Dementia, 
Non-Dementia, Very-Mild-Dementia, and Mild-Dementia. The 
goal is to achieve the best performance metrics in terms of 
Accuracy, Precision, Recall, Area Under Curve (AUC), and F1-
Score. 

EXPERIMENTAL 

Dataset 

In this work, we used a recently published dataset available on 
Kaggle platform7.  The dataset contains 6400 MRI images 
belonging to the 4 above-mentioned classes. Table.1 shows  
samples of each class with the total number of samples for each 
one. 

Data augmentation 

As our proposition is a deep learning technique, the training 

 

 

Table 1. Sample of each class and the corresponding number of classes 
Moderate-Dementia Non-Dementia Very-Mild-Dementia  Mild-Dementia 

64 images 3200 images 2240 images  896 images 

   

 

 

phase needs a sufficient set of data. Therefore, some of image 
data augmentation techniques are applied (mirror, scale, 

rotation). Figure.1 illustrates the applied techniques. 

 

 
Fig.1 Example and illustration of the applied data augmentation 

 
 
CNN architecture 

We propose a CNN architecture presented in Table.2. Our model 
is trained on Kaggle platform due to the available hardware 
resources. To validate our proposition, K-Fold cross-validation 
with k = 5 is used. The used hyper-parameters are described in 
Table.3. Data is split into 80% for training and the rest for 

validation and test. 

RESULTS AND DISCUSSION 

After training and validating our model in around 5.25 hours, the 
overall of the above-mentioned evaluation metrics (Accuracy, 
Precision, Recall, AUC, F1-Score) are obtained and calculated. 
Table.4 summarized all obtained results at each fold for 
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validation as well as the average of training performance. We 
note the importance of using regularization and normalization 

blocs (Dropout and Batch Normalization) in preventing 
overfitting.  

Table 2. The proposed CNN architecture has 4 blocs, the first three blocks are used for auto feature extraction while the latest one is for 
feature learning phase. We note that all activation functions are ReLU and only the latest one is softmax. 

Bloc_1 Bloc_2 Bloc_3  Bloc_4 

Input (224x224x3) 
Conv2D (128, (3,3)) 

MaxPool2D(2,2) 
BatchNorm 
Activation 

Dropout(0.3) 

Conv2D (256, (3,3)) 
MaxPool2D(2,2) 

BatchNorm 
Activation 

Dropout(0.3) 

Conv2D (512, (3,3)) 
MaxPool2D(2,2) 

BatchNorm 
Activation 

Dropout(0.3) 

 Dense (256) 
BatchNorm 
Activation 

Dropout(0.3) 
Dense(4) 

Activation(softmax) 

 
Table 3. The used hyper-parameters. We reduce the learning rate after 20 epochs if there is no improvement in the model accuracy i.e. new_lr 

= 0.7 * current_lr. 
Optimizer Batch size Epochs  Learning rate reduction factor 

Adam 64 270  0.7 after every 20 epochs if there is no improvement 

 

Table 4. Proposed CNN model training and validation results. 
 Accuracy Precision Recall AUC F1-Score 

Train 0.9997 0.9994 0.9993 0.9999 0.9994 

Fold-1 0.9511 0.9030 0.9012 0.9700 0.9021 

Fold-2 0.9589 0.9178 0.9178 0.9727 0.9179 

Fold-3 0.9594 0.9188 0.9188 0.9799 0.9188 

Fold-4 0.9574 0.9149 0.9149 0.9736 0.9149 

Fold-5 0.9565 0.9130 0.9130 0.9732 0.9129 

Avg+Std 0.95666 ± 0.0029 0.9135 ± 0.0056 0.9131 ± 0.0063 0.9738 ± 0.0032 0.9133 ± 0.0059 

 
CONCLUSIONS 
Deep learning architectures, especially CNN, have proven their 
effectiveness in dealing with medical images. Many models have 
been built to classify many diseases. In this work, we trained a 
CNN model that classifies AD dementia MRI images into four 
early disease-stage classes: Mild-Dementia, No-Dementia, Very-
Mild-Dementia, and Moderate-Dementia. It is very important to 
early diagnose AD to attribute the appropriate treatment which 
can slow the disease development. Our proposed model reached 
an accuracy of 95.66%, 91.35%, 91.31%, 97.38%, and 91.33% 
for precision, recall, AUC, and F1-Score respectively.  
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ABSTRACT: Medical imaging has become an indispensable tool for any clinical examination. In fact, the diagnosis has 
become much more precise with the use of images, like pathologies such as Covid-19 pandemic which continues to have a big 
influence on the health and daily life of the global population. The most important step for stopping Covid-19 is to detect infected 
patients effectively and impose immediate isolation. Patients infected by Covid-19 were found to present abnormalities in X-ray 
images chest, which makes it possible to detect Covid-19 cases in clinical medicine were computed X-ray images chest provides 
useful information for radiologists to diagnose Covid-19. In this paper, we propose a new deep neural architecture to classify a 
Covid-19 patient. Our architecture is based on attention model and EfficientNet architecture. We propose a new deep architecture 
based on EfficientNetB3-V2 to which we have added an attention mechanism. Our results are more reliable and explainable than 
those of traditional deep learning-based classification models. Experimental results show that our approach is able to achieve a 
good performance with an accuracy of 0.98 in comparison with other models such as VGG16, DenseNet21, Inception V3, 
Resnet50 and MobileNet V2. 
Keywords: Covid-19; X-ray images chest; Deep learning; Attention mechanism; CNN models, EfficientNet. 

 

. 

INTRODUCTION 
Coronaviruses, a family of viruses, cause infection and 
consequently illness ranging from the common cold to severe 
diseases like Severe Acute Respiratory Syndrome (SARS) and 
Middle East Respiratory Syndrome (MERS). A novel 
coronavirus, COVID-19, is the infection caused by SARS-CoV-
2. A study by World Health Organization (WHO) proves that 
COVID-19 virus like SARS cause open holes in lungs and 
appear like a honeycomb. The first outbreak of Covid-19 was 
identified in Wuhan, Hubei, China, in December. Within three 
months (On March 11, 2020) of the first outbreak, WHO 
declared the COVID-19 a pandemic. By 09 April 2020, this virus 
affects more than 15.5 lakhs people and more than 90 thousand 
people lost their lives. The report from Imperial College, London 

suggests that more than 90% percent of the world population 
could have been affected and could have killed 40.6 million 
people if no mitigation measures have been taken to combat the 
virus1. 

People suffering from COVID-19 have moderate respiratory 
illness that can be cured without any special treatment of 
antibiotics. However, people facing from medical complications 
like diabetes, chronic respiratory diseases, and cardiovascular 
diseases are more likely to suffer from this virus. According to 
the reports of  WHO, common symptoms of COVID-19 are 
same as that of common flu, which include fever, tiredness, dry 
cough, and shortness of breath, aches, pains and sore throat2. 
These common symptoms make difficult to detect the virus at an 
early stage. As this is a virus, so there is no chance that it can be 
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limited by anti-biotics, which works on bacterial or fungal 
infections. 

The National Institute of Allergy and Infectious Diseases 
(NIAID) and Rocky Mountain Laboratories (RML) have 
released some images of COVID-19 virus using scanning and 
transmission electron microscopy. Figure 2.1 shows the sample 
images of COVID-19 virus captured by NIAID and RML using 
different microscopes. Image in Figure 2.1(a) shows the 
COVID-19 virus captured by scanning electron microscope 
from a US patient where virus particles are shown in yellow 
color and emerge from the cells that are shown in blue and pink 
color. Image shown in Figure 2.1(b) is captured by the 
transmission electron microscope. This figure is clearly able to 
illustrate that COVID-19 virus looks similar form outside as 
most of the corona viruses including SARS and MERS, sharing 
the bump covered spherical surface1-2.  

RELATED WORKS 
With the COVID-19 virus affecting the world since December 
2019, and the need to identify infections faster,many studies 
have been carried out especially on the detection of COVID-19 
with computer-aided systems. Most of the studies have been 
carried out using deep learning approaches that have become 
popular in the last few years, which can speed up the analysis of 
various medical images. Therefore in the study of Barstugan et 
al.3 where classical learning methods are preferred, a new 
approach has been proposed for the classification of COVID-
19.They have extracted features with the help of patches of 
different sizes as 16x16, 32x32, 48x48, 64x64 from 150 CT 
images. The best classification accuracy was obtained as 99.68% 
by classifying the obtained features with an SVM (Support 
Vector Machines) classifier, with 10-fold cross-validation and 
GLSZM feature extraction method. 

Wang et al.4 designed a special deep learning-based framework 
called COVID-Net (a new architecture of CNN). They applied 
the 1*1 convolutional deep learning method to the data sets 
consisting of chest X-ray images into normal, pneumonia, and 
COVID-19, they use a much larger dataset consisting of 13, 800 
CXR images across 13, 645 patient cases from which 182 
images belong to COVID-19 patients. The authors report an 
accuracy of 92.4% overall and sensitivity of 

80% for COVID-19. 

Nihad et al.5 proposed a CNN-based method, called 
PDCOVIDNet Parallel-Dilated convolution-based COVID-19 
detection network ), for detecting COVID-19 from chest X-ray 
images. PDCOVIDNet can effectively capture COVID-19 
features by dilated convolution in the parallel stack of 
convolution blocks,we used a total of 2905 chest X-ray images, 
comprising three cases (such as COVID-19, normal, and viral 

pneumonia).The authors claimed the effectiveness of the model 
compared with some well known CNN architecture and showed 
precision and recall of 96.58% and 96.59% respectively in a case 
of COVID-19 detection. 

In6 five pre-trained convolutional neural network-based models 
(ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-
ResNetV2) have been proposed for the detection of COVID-19 
using chest X-ray images. We have implemented three different 
binary classifications (COVID-19, normal, viral pneumonia and 
bacterial pneumonia). Performance results show that ResNet50 
pre-trained model yielded the highest accuracy among five 
models for used three different datasets (Dataset-1: 96.1%, 
Dataset-2: 99.5% and Dataset-3: 99.7%). 

Halgurd et al.7 introduced a simple yet an effective CNN model 
together with testing pre-trained AlexNet for the detection of 
COVID-19 disease, using their own chest X-ray and CT scan 
data set while providing accuracy up to 98% via modified pre-
trained model and 94.1% accuracy by using the modified CNN. 

Farooq et al.8 developed COVID-ResNet, a deep learning 
framework for the problem of classifying CXRs into normal, 
COVID-19, bacterial pneumonia and viral 
pneumonia.COVIDResNet was trained on a publicly available 
dataset COVIDx that consists of 68 COVID-19 radiographs 
from 45 COVID-19 patients, 1,203 healthy patients, 931 patients 
with a bacterial pneumonia and 660 patients with Non COVID-
19 viral pneumonia. This framework is highly sensitive to 
normal 96.58 % and COVID-19 100 % classes. 

Aplostolopoulos et al.9 transferred some existing object 
classification models into the COVID-19 classification area. 
They compared five currently existing models, namely, VGG-19, 
MobileNet v2, Inception, Xception, and Inception ResNet-v2 
were trained using transfer learning on ImageNet, and different 
neural network architectures were used on top of each 
architecture.VGG-19 outperforms the other models and has an 
accuracy of 98.75 % in the two class classification scheme and 
93.48 % in the three-class classification scheme. 

Kumar et al.10 presented the use of ResNet152 and seven 
traditional machine learning classifiers, for the effective 
classification of COVID-19, including logistic regression, 
nearest neighbors, decision tree, random forest, AdaBoost 
classifier, naive Bayes, and XGBoost classifier. 

This model has an accuracy of 97.7 % on the XGBost classifier. 
Boyi Liu et al.11 proposed an experiment to compare the 
performance of federated machine learning, between four 
popular models (Mobile Net, ResNet18, MobileNet-v2, and 
COVID-Net), by applying them to the patient chest images CXR 
dataset. These models are designed to recognize COVID-19 
pneumonia, the authors used the same parameters for all models, 
after 100 rounds the authors found that the ResNet18 model is 
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the fastest model and gives the highest accuracy rate (96.15%, 
91.26%), second, the COVID-Net and MobileNet-v2 had the 
same loss value as COVID-Net and Mobile Net. Non-federated 
learning was conducted on the same data and it was found that 
the loss convergence rate caused by using federated learning 
decreased slightly. 

Fatima M Salman et al.12 proposed deep learning model to 
identify COVID-19 cases using patient’s chest x-rays images by 
implementing convolutional neural network CNN deep learning 

algorithm which based on the algorithm of IncepyionV3, they 
used patient’s chest x-rays datasets contains 130 images of 
COVID-19 x-ray cases and 130 images for normal cases x-ray, 
their prediction machine learning model gives 100% prediction 
accuracy. 

From the above Table and the previous literature review study, 
we notice that most of the studies have used machine learning 
and deep learning to predict the COVID-19 pandemic. 

It can be seen also that all the earlier seen studies used different 
methods such as GLSZM+SVM and XG-Boos like in2-10, CNN 
and AlexNe like in7 also one of the previous studies used 
ensemble on heterogeneous models, i.e, VGG19, ResNet50, 
MobileNetv2, Inception, Xception in 6-9, but that approach has 
some limitations such as that each model requires a separate 
training session, and an individual model suffers from training 
many parameters. 

To address the most problems, we use a lightweight but effective 
model EfficientNet since it is 8.4 times smaller and 6.1 times 
faster than the best existing CNN. Also, to extenuate the 
limitation related to the computational cost of training multiple 
deep learning models for ensemble prediction, we force large 
changes in model weights through the recurrent learning rate, 
creating model snapshots in the same training, and further apply 
an ensemble to make the proposed architecture more robust. 

PROPOSED METHOD 
Convolutional neural networks (CNNs) are commonly 
developed at a fixed resource cost, and then scaled up in order to 
achieve better accuracy when more resources are made available. 
For example, ResNet can be scaled up from ResNet-18 to 
ResNet-200 by increasing the number of layers, and 
recently, GPipe achieved 84.3% ImageNet top-1 accuracy by 
scaling up a baseline CNN by a factor of four. The conventional 
practice for model scaling is to arbitrarily increase the CNN 
depth or width, or to use larger input image resolution for 
training and evaluation 

EfficientNet Architecture 
The effectiveness of model scaling also relies heavily on the 
baseline network. So, to further improve performance, we have 

also developed a new baseline network by performing a neural 
architecture search using the AutoML MNAS framework, 
which optimizes both accuracy and efficiency (FLOPS). The 
resulting architecture uses mobile inverted bottleneck 
convolution (MBConv), similar to MobileNetV2 and MnasNet, 
but is slightly larger due to an increased FLOP budget. We then 
scale up the baseline network to obtain a family of models, 
called EfficientNets. 

 

 

Fig. 1 The architecture for our baseline network EfficientNet-B0 is 
simple and clean, making it easier to scale and generalize 

 

The other EfficientNet CNN models are defined through the 
model scaling idea and are, hence, deeper and wider. For 
example, EffecientNet-B3-V2 model is shown in Fig. 2, where 
IRC means that the MBConv block uses an inverted residual 
connection. Similar, to EffeicienNet-B0 it used MBConv1 and 
MBConv6 modules. 

 

Fig. 2 The proposed EffecientNet-B3-V2 where the attention 
mechanism is incorporated at some intermediate layer of the model 

http://www.arxiv.org/abs/1512.03385
https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html
http://www.image-net.org/
https://en.wikipedia.org/wiki/Neural_architecture_search
https://en.wikipedia.org/wiki/Neural_architecture_search
https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1807.11626
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Notice that the neurons in the first convolutional layer capture 
the features in a small area in the image. If the size of the filters 
used is 3x3 than that will be the size of this area. 

We call this area the receptive field of that neuron in the image. 
In the next layer of the CNN each neuron is convolved with the 
same 3x3 area in the previous layer but that translates to a large 
receptive field in the input image. As we go deeper and deeper 
into the network each neuron corresponds to a larger and larger 
receptive field. 

However, another idea is to incorporate the attention module at 
lower convolutional layers because the higher layers’ features 
represent very large receptive fields with highly overlapping 
regions, which means the attention mechanism may not be 
effective with these features. Thus, we also propose to 
investigate other options as shown in Fig. 1, where the attention 
module is added as a second branch in the network starting from 
different MBConv blocks. 

As can be seen in Fig. 2, we investigate several positions for the 
attention branch including MBConv blocks 9,14, 19, 25, and the 
last 27th block. In other words, the model now has two separate 
branches. This also means that the model has two outputs which 
must be optimized jointly. The final proposed model called 
EfficientNet-B3, is shown in Fig. 2, where the attention module 
is connected to Block 19. 

EXPERIMENTAL 

Dataset description 

In this work, two types of COVID-19 datasets were used: 

Dataset 01— We have used the chest x ray images dataset from 
[47]. There are 9545 images in this dataset and is split into two 
partitions. 4045 for covid images and 5500 for non covid. 80% 
of them made up the training phase, 10% the testing phase and 
10% the validation phase, as shown in table1 and Fig. 3. 

 

Table 1. Distribution of images in training testing and validation 
sets for Dataset 1 

Dataset 1 Training Testing Validation Total 

Covid 3033 506 506 4045 

Non Covid 4125 2 688 687 5500 

Total 7158 3  1194 1193 9545 

 
Fig 3 Bar chart showing the distribution of images in training 

testing and validation sets for Dataset 1 

 

Dataset 02 — is the dataset used to train and evaluate model by 
merging two other public datasets: RSNA Pneumonia Detection 
Challenge dataset And COVID-19 Image Data Collection. The 
new dataset, called COVIDx, is designed for a classification 
problem and contemplates three classes: 

Normal, Pneumonia, and COVID-19. The dataset has a total of 
13 677 images, approximately 80% of them made up the training 
phase, 10% the testing phase and 10% the validation phase, as 
shown in Table 2 and Fig 4. 

 

Table 2. Distribution of images in training testing and validation 
sets for Dataset 2 

Dataset 1 Training Testing Validation Total 

Covid 2568 428 428 3424 

Pneumonia 1009 168 168 1345 

Normal 6680 1114 1114 8908 

Total 10257 3  1710 1710 13677 

     

 
Fig 4 Bar chart showing the Distribution of images in training 

testing and validation sets for Dataset 2 
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Data preparation 

In the present study, there is a need to make X-ray scan images 
compatible with the pre-trained transfer learning-based model. 
For this, pre-processing steps: change in input image data type, 
resizing of the input images, and normalization of input images. 
Initially, the input images are read into a numerous image format 
(jpeg, jpg, png) and resized to 224x224x3. In the prepossessing 
stage, X-ray scan images in the input dataset are of different sizes, 
thus to maintain the uniformity the input images are resized to 
224x224x3, and the order of the color channels was changed 
from the default BGR to RGB to prepare the images for 
processing. 

Data augmentation 

data augmentation is an important step to achieve meaningful 
information and accurate classification. which the values of the 
pixels of each image were scaled by transferring to (0,255) such 
that the images would be standard during training, and in order 
to enhance the size and quality of the training dataset. 
Specifically, we utilized the Image Data Generator class of Keras 
(https://keras.io). The augmentation options included 
geometrical distortions such as small rotations, shearing and 
zooming up to a factor of 20%. 

Model and architecture interpretation 

The main task in the experiment is image classification. There 
are already many classic neural networks in this field, and there 
are models specifically designed for the recognition of COVID-
19 pneumonia CXR images. 6 models are used in the 
experiments (EfficientNetB3-V2, DenseNet121, Vgg16, 
ResNet50, InceptionV3, MobileNetV2). The model is a 
sequential which allows us to create the model layer-by-layer. In 
these layers, flatten layers, batch normalization layers, and 
dropout layers with 30% dropout rate were performed as well in 
our case. We will be using the Rectified linear unit (ReLU) 
activation function for all the layers except the final output layer. 
ReLU is the most common choice for activation function in the 
hidden layers and has shown to work pretty well. The final 
output layer is another dense layer which has number of neurons 
equal to the number of classes. we employed a SoftMax for a 
multi-class classification problem, and sigmoid for binary class 
classification problem. The model is compiled with categorical 
cross entropy loss function (multi-class classification). 

We set the number of epochs to 21 epochs, the learning grate is 
1e-5, and the optimizer we used Nadam. Training-related 
parameters are shown in Table 3.  

We trained the model using a GPU for SpeedSup the training 
process, also we used the accuracy metric is used to evaluate the 
model. We save the best model to be used to make predictions 
accuracy By applying two different attention (lime attention and 
grad cam attention). 

Table 3. Parameters related to model training 

Parameter Value 

Dropout Rate 0.30 

Batch size 50 

# Epochs 21 

Optimize Nadam 

Learning rate 0.005 

Attention maps 

Although the modular architecture of EfficientNetB0 model 
provides encouraging recognition performance for image 
classification, there are still several issues where it is challenging 
to reveal why and how to produce such impressive results. Due 
to its black-box nature, it is sometimes contrary to apply it in a 
medical diagnosis system where we need interpretable system 
visualization techniques assist in illustrating the basis of 
prediction of the model. There are many attention maps and 
visualization techniques for example Gradient-weighted Class 
Activation Mapping (Grad-CAM), saliency maps (SM), local 
interpretable model-agnostic explanations (LIME), and a lot 
more. In this article, Grad-CAM and LIME techniques are 
utilized to present the model perception of identifying and 
classifying and to distinguish between different categories (such 
as COVID-19, normal, and pneumonia), from X-ray images, 
where EfficientNetB0 emphasizes correct classification of these 
photos. 

 
Fig 5 Explanatory scheme for attention maps of dataset 1 

 

Accurate and definitive salient region detection is crucial for the 
analysis of classification 

decisions as well as for assuring the trustworthiness of the results. 
In order to locate the salient area, Grad-CAM with various 
illuminations related to feature importance are used, as show in 
Fig 5 and Fig 6. Bright regions could be defined as regions 
containing the features that had the most effective role in making 
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decisions about whether or not to have a disease. As for the Lime 
method, it works by making alterations on different features on 
a particular input and seeing which of those alterations make the 
biggest difference to the output classification. 

Thus, highlighting the features most relevant to the network 
decision. Where the red and green areas in the LIME generated 
explanation correspond to the regions that contributed against 
the predicted class and towards the predicted class respectively 
(Green represents healthy areas, while red represents diseased 
areas) as we show in Fig 5 and Fig 6. 

In this two-way, causality and explainability were included in the 
study. It was concluded that the developed model could be used 
in healthcare centers so that would no need to wait long times for 
the radiologists to interpret the images. 

 

 
Fig 6 Explanatory scheme for attention maps of dataset 2 

RESULTS AND DISCUSSION  
In order to show the results obtained for the six models, we 
illustrate in what follows the results in terms of precision and 
error as well as confusion matrix for each of the six models. After 
analyzing the results obtained, the following remarks are noted: 
1. From Fig 6 and Fig 7 the accuracy of training and testing 
increases with the number of epochs, this reflects that with each 
epoch the model learns more information. If the precision is 
reduced then we will need more information to make our model 
learn and therefore we must increase the number of epochs and 
vice versa. Similarly, the decline of loss during the training 
processes the with the number of epochs. 

 
Fig 6 Accuracy and error for six different binary class models [8] 

 
Fig 7 Accuracy and error for six different multi class models 
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2. Fig 6 and Fig 7 curves showed clear evidence of the absence 
of overfitting. We also note the convergence in the results of the 
six models for each of Binary Class and Multiclass in terms of 
accuracy and loss, as it turns out that the percentage of loss 
achieved a small percentage in most of the models. 

Confusion matrix 

In this study, we used traditional measures to evaluate the 
performance of the proposed model, using a confusion matrix. 
Where: 

• The True Positive (TP): is the number of correctly predicted 
COVID-19 /images. 

• The False Positive (FP): is the number of mistakenly predicted 
COVID-19/images and the Positive is the number of 
cases/images of COVID-19 patients. 

• The True Negative (TN): is the number of correctly predicted 
non-COVID-19 pneumonia cases/images. 

• The False Negative (FN): is the number of mistakenly 
predicted non-COVID-19 /images and The Negative is the 
number of non-COVID-19 /images enrolled. 

 
Fig 8 Confusion matrix of EfficientNetB0 

 

By applying the Efficient NetNetB3-V2 model, 314 correctly 
predicted COVID-19 images were obtained, 11 incorrectly 
predicted images were obtained, 1103 non-COVID images were 
correctly predicted and 15 incorrectly predicted non-COVID-19 
images were obtained.as show in Fig 8. 

Confusion matrix of models are presented in Fig 9 and Fig 10 
for Dataset 1 and Dataset 2 respectively. 

 
Fig 9 Confusion matrix for each model from dataset 1 

 

Fig 10 Confusion matrix for each model from dataset 2 
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Based on this confusion matrix, the sensitivity, specificity, 
accuracy and F1 score were calculated. Here, sensitivity was 
defined as the ratio of COVID-19 cases correctly detected by the 
model to all the actual COVID-19 cases. Specificity was defined 
as the ratio of the Non COVID-19 cases correctly detected by 
the model to all the actual Non COVID-19 cases. Moreover, 
accuracy was defined as the rate of all the COVID-19 and non-
COVID-19 cases accurately detected on the basis of the Xray 
images. In Table 4, we have summarized the proposed model’s 
comparison for two datasets different (binary class, multi class). 

 

Table 4. Comparison table of models 

Data Set Architecture Accuracy 

DataSet 1 

Binary Class 

EfficientNetB3-V2 98.40 

VGG16 92.00 

DenseNet21 96.00 

Inception V3 92.80 

Resnet50 91.60 

MobileNet V2 96.40 

DataSet 2 

Multi Class 

EfficientNetB3-V2 97.20 

VGG16 94.40 

DenseNet21 95.60 

Inception V3 93.60 

Resnet50 91.20 

MobileNet V2 93.60 

CONCLUSIONS 
This paper presents a brief review of the usage of deep learning   

and Based on the results, it is demonstrated that deep learning 

with CNNs may have significant effects on the automatic 

detection and automatic extraction of essential features from X-

ray images, related to the diagnosis of the Covid-19. We 

conducted X-Ray images training architecture based on 

EfficientNetB3 augmented with an attention mechanism. This 

architecture baptized EfficientNetB3-V2 is compared to five 

different models such as DenseNet21, VGG16, ResNet50, 

Inception V3 and MobileNetV2. 

The experimental results of the comparison between them 

showed that the EfficientNetB3-V2 produced the best 

classification accuracy identification among the five popular 

models in both binary classification and multiclassification. 

This model can be used to help the radiologist to make clinical 

decisions, due to its unbiased high-accuracy and correctly 

identified focus region. Attention mapping technology was also 

used to find out which part of the chest x-ray was most important 

in diagnosing whether a patient had COVID-19 infection or not, 

as it greatly helps doctors in detecting and predicting COVID-19 

at an early stage. 

Future developments include combining the proposed method 

with some of the novel techniques introduced in the very recent 

work Channel-Attention-Based mechanism. A second direction 

is inserting the attention mechanism in every MBConv block of 

the EfficientNetB3-V2 model. 

Finally, another possible improvement is adding attention 

mechanism by using both CAM and GRAD-CAM at every 

training epoch to visualize and explain the deep networks via 

these two techniques in order establish appropriate trust in 

predictions performance from any stage of models. 
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ABSTRACT: The work done was about the autonomous navigation of the “Pioneer 3DX” mobile robot, the aim of this 
project was to remotely control the robot to perform various tasks such as navigation obstacles avoidance, using distance 
measurement, in addition to visualization using the camera. Our work deals with the issue of autonomous navigation of mobile 
robots in static or dynamic in door environments like the hospitals. This framework is defined by the specificities of the envisaged 
applications, which we can summarize by navigation for mobile robots near obstacles. 
The work consists of studying and applying the algorithms for the autonomous navigation of mobile robots in a construction site, 
in order to allow the robot to move from one initial position to another final while avoiding obstacles and collisions. 
Our strategy concerns the development of methods inspired by artificial intelligence to ensure optimized navigation while avoiding 
obstacles in the environment where robots must operate. 
We will simulate autonomous navigation in an unknown environment to reach the goal we want to reach while avoiding obstacles, 
where we will use a Pioneer 3-DX mobile robot equipped with a camera, which will help achieve the desired goals. 
We have written a code in Python that gives the robot instructions that allow it to navigate to any place, we specify in our code 
while avoiding obstacles if there are any. We use ROS (Robot Operating System) that provides services similar to an operating 
system for robotics as well as operating systems for computers (hardware abstraction, management of competition, processes, etc.) 
but also functionalities of high level (asynchronous calls, synchronous calls, centralized database, robot configuration system, etc.). 
Simulation results prove the effectiveness of this method. 
Keywords: Mobile robot ; Obstacles avoidance; Vision navigation; Mobile camera. 
 

 
 
INTRODUCTION 
In recent years, robots have become an important and effective 

factor in the development of human society. Because of its 

importance in our daily life. 

Robotics is a branch of engineering and science that includes 

electronics engineering, mechanical engineering and computer 

science and so on. This branch deals with the design, 

construction, use to control robots, sensory feedback and 

information processing 4-7. 

A robot is a reprogrammable, multifunctional manipulator  

 

 

designed to move material, parts, tools or  specialized  devices  

through variable programmed motions for the performance of a 

variety of tasks 2. 

Interest in mobile robots has increased dramatically in recent 

years. Men realize that some work previously carried out by 

humans could be carried out by machines equipped with more or 

less complex means depending on the type of work to be carried 

out. These jobs can be arduous, tiring, dangerous or impracticable 

for humans. Examples include those that must be performed in 

 

2021 
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hostile environments where the air is unbreathable, in nuclear 

power plants, in space, in the oceans, or certain repetitive work 

involving little human intellectual capacity. Various reasons have 

contributed to the development of Artificial Intelligence and 

Robotics 3-9: 

• From a purely scientific point of view, techniques and methods 

have matured and refined. 

• Economic needs, within the framework of the capitalist mode 

of production, pushing towards an increase in profit, the 

improvement of productivity has always been an imperative for 

the functioning of the system. This has been further accentuated 

by economic crises and global competition. 

This work is part of the problem of autonomous mobile robot 

navigation and focuses mainly on a specific type of system and 

application, in this case, using vision to avoiding obstacles. He 

thus comes to producing a specific robotic environment where 

autonomou mobile robots must use camera to support the tasks 

under this site.  

Our work offers a partial view of research topics related to the 

field of mobile robotics and presents the scientific barriers that 

remain to be overcome lead to the development of an autonomous 

robot. The autonomy of the latter requires the perception of the 

environment. Among these, navigation plays a fundamental role 

in the interaction of the robot with its changing environment. It 

consists of determining the path for the robot basing to the data 

giving by the camera, skirting the fixed obstacles. To perform this 

task, our approach is to use a mobile camera to detect all the 

obstacles in front, left or right the robot, the aim being to allow 

this latter to change position while avoiding obstacles. This 

method is simulated and several scenarios were tested. The 

results obtained demonstrate the robustness of the method as well 

as extended performance. 

In this work, we will work on this aspect of mobile robotics by 

presenting three sections and several steps: 

The first section is devoted to the presentation of mobile robots. 

A general overview on the field of mobile robotics is approached 

to examine the typology of mobile robots, the different 

constituent parts and the existing control architectures for a 

mobile robot. 

In the second section, we present an introduction to the program 

we used: ROS (Android Operating System) and the Python 

programming language, in addition to an idea of the concept of 

open source. 

The third section deals with discussing and analyzing simulation 

results and various experiments to accomplish the task defined 

by the robot, which is convergence towards the goal and avoiding 

obstacles. 

EXPERIMENTAL 
A mobile robot  
An automatic machine that is capable to move around in its 

environment and is not fixed to one physical location (Fig.1). 

Following the degree of autonomy, the means of perception and 

reasoning, certain robots are capable, under reduced human 

control, to model their workspace and to plan a trajectory in an 

environment they did not necessarily know before8. 

Actually, most sophisticated mobile robots are essentially 

destined to applications in variable or uncertain environments, 

often full of obstacles, needing adaptability1.  

 

 
 

Fig.1 Pioneer P3-AT equipped with arm manipulator 

 

Rolling without sliding and non holonomy 

Consider a vertical wheel that rolls without sliding on a level 

ground, the rolling without sliding results in the zero speed of the 

point I of the wheel in contact with the ground (Fig.2). 

 

 
Fig.2 Description of a wheel 
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With the notations of figure 2, we obtain: 

�⃗�𝑣(𝐼𝐼/𝑅𝑅0) = �̇�𝑥𝚤𝚤 + �̇�𝑦𝚥𝚥 + ��̇�𝜃𝑘𝑘�⃗ + �̇�𝜑(−𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝚤𝚤 + 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 𝚥𝚥)� ˄(−𝑟𝑟𝑘𝑘�⃗ ) 

= (�̇�𝑥 − 𝑟𝑟�̇�𝜑 cos𝜃𝜃) 𝚤𝚤 + (�̇�𝑦 − 𝑟𝑟�̇�𝜑 sin𝜃𝜃)𝚥𝚥 = 0     (1) 

 

Where: r is the radius of the wheel and (x, y) is the coordinate of 

the point 𝑐𝑐1 in the fixed reference 𝑅𝑅0 = (𝑐𝑐, 𝚤𝚤 ���⃗ , 𝚥𝚥, 𝑘𝑘�⃗ ). We deduce 
two constraints: 

                  ��̇�𝑥 − 𝑟𝑟�̇�𝜑 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 0
�̇�𝑦 − 𝑟𝑟�̇�𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 0                (2) 

 

The model (2) can be transformed to show the speed components 

in the planes of the wheel and perpendicular to the wheel, the 

following kinematic constraints are then obtained: 

��̇�𝑥 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + �̇�𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 𝑟𝑟�̇�𝜑
−�̇�𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + �̇�𝑦 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 0               (3) 

 

It is interesting to note that by introducing 𝑣𝑣 = 𝑟𝑟�̇�𝜑  the rolling 

speed of the wheel and 𝑤𝑤 = �̇�𝜃its speed of rotation around the 

axis  𝑘𝑘����⃗ , we form the following model: 
 

                   �
�̇�𝑥
�̇�𝑦
�̇�𝜃
� = �

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 0
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 0

0 1
� �𝑣𝑣𝑤𝑤�            (4) 

 

The differential type robot 

We consider the mobile robot of the uni-cycle type shown 

schematically in Figure 3 this robot is equipped with two fixed 

drive wheels controlled independently and idle wheels ensuring 

its stability. 

 

 

 

 

 

 

 

 

 

Fig.3 Uni-cycle type robot 

 

Let the abscissa and ordinate (x, y) of the middle of the axis of 

the two drive wheels, 𝜃𝜃 the orientation of the robot, r the radius 

of the wheels and 2R the distance between the two drive wheels. 

Returning to equation (1) and it is easily shown that the non-slid 

rolling constraints of each of the controlled wheels are written: 

- for the left wheel 

             �̇�𝑥 − 𝑅𝑅�̇�𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑟𝑟𝜑𝜑1̇𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 0           (5) 

             �̇�𝑦 − 𝑅𝑅�̇�𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝑟𝑟 𝜑𝜑1̇𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 0           (6) 

- for the right wheel 

             �̇�𝑥 − 𝑅𝑅�̇�𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑟𝑟𝜑𝜑2̇𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 0           (7) 

             �̇�𝑦 − 𝑅𝑅�̇�𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝑟𝑟 𝜑𝜑2̇𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 0           (8) 

 

These four constraints are not independent since the difference of 

the left-hand sides of the equalities (5) and (7) is proportional to 

that associated with (6) and (8). The last constraint, for example 

can therefore be omitted. In addition, a constraint is completely 

integrable. Indeed, we have:  

��̇�𝑥 cos𝜃𝜃 + �̇�𝑦 sin𝜃𝜃 − 𝑅𝑅�̇�𝜃 = 𝑟𝑟𝜑𝜑1̇
�̇�𝑥 cos𝜃𝜃 + �̇�𝑦 sin𝜃𝜃 + 𝑅𝑅�̇�𝜃 = 𝑟𝑟𝜑𝜑2̇

        (9) 

Thus, we obtain: 

2𝑅𝑅�̇�𝜃 = 𝑟𝑟(𝜑𝜑2̇ − 𝜑𝜑1̇)            (10) 

Which implies: 

2𝑅𝑅𝜃𝜃 = 𝑟𝑟(𝜑𝜑2 − 𝜑𝜑1) + 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐       (11) 

 

Consequently, there are only two independent constraints left, (5) 

and (6), of which an equivalent writing is:  

                

                    �
�̇�𝑥 = 𝑣𝑣 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃
�̇�𝑦 = 𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
�̇�𝜃 = 𝑤𝑤

                   (12) 

 

Where:  

- The linear speed of the robot is 

                  𝑣𝑣 = 𝑟𝑟
2

(𝜑𝜑1̇ − 𝜑𝜑2̇)                (13) 

 

- The angular speed of the robot is 

                  𝑤𝑤 = 𝑟𝑟
2𝑅𝑅

(𝜑𝜑2̇ − 𝜑𝜑1̇)               (14) 

 

The fact that this system is the same as the model (4) obtained for 

a single wheel (uni-cycle), which justifies the qualifier uni-cycle 

often used in the literature. 

𝜑𝜑2 

𝜑𝜑1 

𝜃𝜃 
𝑥𝑥 

𝑦𝑦 

𝚥𝚥 

𝚤𝚤 𝑐𝑐 
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Robotic Development Environment 
Robotic systems involve many skills such as mechanics, 

electrical engineering, control, computer vision, and many areas 

of computing such as real-time computing, parallelism, and 

networking. Often advances in robotics depend on technological 

obstacles solved in these scientific fields. 

In this section, we begin by describing the software platform and 

hardware platform used, and then we present the suggested 

communication mechanisms, simulation programs, and 

programming language used in the experiment. 

 

ROS (Robot Operating System) 

It is a system that provides services similar to an operating system 

for robotics as well as operating systems for computers (hardware 

abstraction, management of competition, processes, etc.) but also 

functionalities of high level (asynchronous calls, synchronous 

calls, centralized database, robot configuration system, etc.). 

ROS is completely open-source and free to users, initially 

developed by the Stanford Artificial Intelligence Laboratory in 

2007, the ROS project was adopted by Willow Labs in 2008 and 

remains their responsibility 10. 

The basic principle of a robotic OS is to operate in parallel a large 

number of executable that must be able to exchange information 

synchronously or asynchronously. For example, a robotic OS 

must interrogate the robot's sensors at a defined frequency 

(ultrasonic or infrared distance sensor, pressure sensor, 

temperature sensor, gyroscope, accelerometer, cameras, 

microphones, etc.), retrieve this information, process it ( data 

fusion), pass them to processing algorithms (speech processing, 

artificial vision, simultaneous localization and mapping, etc.) and 

finally, control the motors in return. This whole process is carried 

out continuously and in parallel. On the other hand, the robotic 

OS must ensure the management of competition to ensure 

efficient access to the robot's resources11. 

The ROS Computation Graph is the peer-to-peer network of ROS 

systems that processes data. The basic features of ROS 

Computation Graph are nodes, ROS Master, the parameter server, 

messages, and services10. 

     The following diagram (Fig.4) shows how topics and 

services work between the nodes and the Master: 

 

Fig.4 Communication between the ROS nodes and the ROS Master 

 

Gazebo simulator 

Simulation of the basic chassis and function of the robotic system 

allowed for the rapid development and testing of the obstacle 

avoidance algorithm. Requirements for the simulation program 

included the ability to integrate well with the ROS network, have 

support for the sensors used, specifically the LRF, and provide 

the ability to add or remove objects while the simulation was in 

progress in order to simulate dynamic obstacles. The simulator 

chosen, based on these requirements, was Gazebo. Dr Andrew 

Howard and Nate Koenig originally developed this 3D simulator 

in 2002 at the University of Southern California. Since then it has 

been continually improved, and the development of the simulator 

was taken over by the OSRF in 2012. According to the overview 

of Gazebo on its webpage, “Gazebo is a 3D dynamic simulator 

with the ability to accurately and efficiently simulate populations 

of robots in complex indoor and outdoor environments,” and 

offers “physics simulation at a much higher degree of fidelity, a 

suite of sensors, and interfaces for both users and programs”. This 

simulator includes a large library of robot models, supports many 

different sensors via plugins, and since it was developed 

alongside ROS, provides a ROS package called gazebo_ros_pkgs 

to facilitate communications between the simulator and the ROS 

network. This package, authored by John Hsu, Nate Koenig, and 

Dave Coleman, is a wrapper for the standalone Gazebo program 

that provides an interface with ROS using “ROS messages, 

services, and dynamic reconfigure”. 

The Gazebo simulator provides user interfaces for designing 
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worlds and robot models for use in simulation. For this work 

research, a robot model was developed utilizing two existing 

open-source models from the Gazebo model library—one for the 

P3-AT chassis, authored by Dereck Wonnacott, and one for the 

Hokuyo LRF, authored by John Hsu. These two models were 

combined using the model editor, and plugins for the robot’s 

skid-steer drive and the laser data from the LRF were added. 

Since the only sensor required to implement the obstacle 

avoidance algorithm was the LRF, no additional sensors were 

modelled for simulation. The resultant robot model used for 

simulation is shown in figure 5. 

 

 

Fig.5 Gazebo Model of P3-AT with LRF Attached 

 

Testing Gazebo with the ROS interface 
Assuming that the ROS environment is properly set up, we 

can start to roscore before starting Gazebo using the following 

command: 

$ roscore  

The following command will run Gazebo using ROS: 

$ rosrun gazebo_ros gazebo 

Gazebo runs two executables-the Gazebo server and the Gazebo 

client. The Gazebo server will execute the simulation process and 

the Gazebo client can be the Gazebo GUI. Using the previous 

command, the Gazebo client and server will run in parallel. 

The Gazebo GUI is shown in the following screenshot (Fig.6). 

 
Fig.6 The Gazebo simulator 

 

Using Gazebo 

The Gazebo GUI is similar to rviz in many ways. The 

central window provides the view for Gazebo's 3D world 

environment. The grid is typically configured to be the ground 

plane of the environment on which all the models are held due to 

gravity in the environment. 

Gazebo also has the same cursor/mouse control as rviz, described 

in the Using rviz section. 

 

Gazebo robotics simulator with ROS 

This tutorial is intended for roboticists that want to have 

realistic simulations of their robotic scenarios. Gazebo is a 3D 

simulator, while ROS serves as the interface for the robot. 

Combining both results in a powerful robot simulator.     With 

Gazebo, you are able to create a 3D scenario on your computer 

with robots, obstacles and many other objects. Gazebo also uses 

a physical engine for illumination, gravity, inertia, etc. You can 

evaluate and test your robot in difficult or dangerous scenarios 

without any harm to your robot. Most of the time it is faster to 

run a simulator instead of starting the whole scenario on your real 

robot. 

Originally, Gazebo was designed to evaluate algorithms for 

robots. For many applications, it is essential to test your robot 

application, like error handling, battery life, localization, 

navigation and grasping. As there was a need for a multi-robot 

simulator Gazebo was developed and improved. 
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RVIZ 

RVIZ is a 3D visualization tool for ROS applications. It provides 

a view of your robot model, capture sensor information from 

robot sensors, and replay captured data. It can display data from 

camera, lasers, from 3D and 2D devices including pictures and 

point clouds. 

The purpose of RIVZ is to enable you to visualize the state of a 

robot. It uses sensor data to try to create an accurate depiction of 

what is going on in the robot’s environment (Fig.7). 

 

 

Fig.7 The RVIZ Simulator 

 

Programming Language 

      Starting with the research of the programming language, 

which will be used to develop the idea, is usually the first thing 

to do. After taking a deep and careful general look at many 

programming languages, Python was the one catching the interest. 

To justify this choice the following section covers an introduction 

about Python, firstly, and secondly a comparison between Python 

and few others programming languages. 

 

What is Python? 

     Python is an interpreted, object-oriented, high-level 

programming language with dynamic semantics. Its high-level 

built-in data structures, combined with dynamic typing and 

dynamic binding, make it very attractive for Rapid Application 

Development, as well as for use as a scripting or glue language 

to connect existing components. Python is simple, easy to learn 

as the syntax emphasizes readability and therefore reduces the 

cost of program maintenance. Python supports modules and 

packages, which encourages program modularity and code reuse. 

The Python interpreter and the extensive standard library are 

available in source or binary form without charge for all major 

platforms and can be freely distributed 13. 

     Often, programmers choose to work with Python because 

of the increased productivity it provides. Since there is no 

compilation step, the edit-test-debug cycle is incredibly fast. 

Debugging Python programs is easy, a bug or bad input will never 

cause a segmentation fault. Instead, when the interpreter 

discovers an error, it raises an exception. When the program does 

not catch the exception, the interpreter prints a stack trace. A 

source-level debugger allows inspection of local and global 

variables, evaluation of arbitrary expressions, setting breakpoints, 

stepping through the code a line at a time, and so on. The 

debugger is written in Python itself, testifying to Python's 

introspective power. On the other hand, often the quickest way to 

debug a program is to add a few print statements to the source, 

the fast edit-test-debug cycle makes this simple approach very 

effective 13. 

     Python is a general-purpose programming language started 

by Guido van Rossum that became very popular very quickly, 

mainly because of its simplicity and code readability. It enables 

the programmer to express ideas in fewer lines of code without 

reducing readability 13. 

 

OpenCV  

OpenCV was started at Intel in 1999 by Gary Bradsky, and the 

first release came out in 2000. Vadim Pisarevsky joined Gary 

Bradsky to manage Intel's Russian software OpenCV team. In 

2005, OpenCV was used on Stanley, the vehicle that won the 

2005 DARPA Grand Challenge. Later, its active development 

continued under the support of Willow Garage with Gary 

Bradsky and Vadim Pisarevsky leading the project. OpenCV now 

supports a multitude of algorithms related to Computer Vision 

and Machine Learning and is expanding day by day 12. 

RESULTS AND DISCUSSION 
First application (Pioneer 3-AT) 
Visual navigation without obstacle environment 

In this first simple example, let's say there are no obstacles in the 
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path, so we don't implement the obstacle avoidance algorithm. 

Now, by specifying the position the robot should go to with "Goal 

x" and "Goal y", the robot will launch from the position (x = 0, y 

= 0), and make its way to the given position. We'll use (x = 5, y 

= -5) in this example (Fig.8). 

 

 
Fig.8 Simulation without Obstacles and Goal at (5, -5) 

 
Visual navigation in an environment with obstacles 

In the  beginning, the  camera of the Pioneer robot was fixed 

and did not moving,  and when executing  the  simulations  

we  noticed  that  the  robot  could  not   avoid  

obstacles  due to the narrow  space  covered by the camera 

because when avoiding the obstacle it had to return to the path  

that  allows  it  to  reach  the  desired  target, so  the  

obstacle becomes very close from the camera,  and  thus the 

field of view becomes narrower than before, and this makes the 

robot not find the necessary space to avoid the obstacle so collide 

with it, and because of this problem we decided to  add  a  

mechanical  hand  that  allows the camera to rotate relative to 

the axis of Z to make  the  camera  rotate  to the obstacle  

when seeing it and This is to better avoid the obstacle and no 

collide with it. Goal coordinates used (x = 5; y = -5) (Fig.9). 

 

 
Fig .9 Simulation with multiple Obstacles and Goal at (5, -5) 

 
Second application (Pioneer 3-DX) 
Before starting the practical work, we encountered several 

problems, most notably: 

- The lack of an exact description of the robot in the 

urdf file as shown in figure 10. 

- Note that the robot runs intermittently. 

 
Fig.10 Pioneer 3-DX before modification 

- And to fix this bug, we modified several commands 

in the urdf file, so it became as follows (Fig.11): 

- We added a robotic hand to allow the camera to 

rotate 

    The starting point 

   The goal point 

    The path 

 

       

 

 

       

 

       

 

    The starting point 

   The goal point 

    The path 
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Fig.11 Pioneer 3-DX after modification 

Visual navigation without obstacle environment 

In this first simple example, let's say there are no obstacles in the 

path, so we don't implement the obstacle avoidance algorithm. 

   Now, by specifying the position the robot should go to with 

"Goal x" and "Goal y", the robot will launch from the position (x 

= -5, y = 5), and make its way to the given position. We'll use (x 

= 5, y = -5) in this example (Fig.12). 

 

 
Fig.12 Simulation without Obstacles and Goal at (5, -5) 

 

Visual navigation in an environment with one obstacles 

Obstacle avoidance is a fundamental problem for any 

autonomous system as it tries to reach its destination. The 

objectives of this research require the robot to be able to detect 

and avoid all existing obstacles. The system is developed based 

on the most restrictive and complex case. The camera was chosen 

as a sensor as one of the best devices for detecting obstacles 

(Fig.13). 

 

 
Fig.13 Simulation with one Obstacle and Goal at (10, -10) 

 
Visual navigation in an environment with Multiple obstacles 

At this point, we will see that the robot can navigate and reach 

the predetermined location in the four quadrants. 

 Quadrant I 

Goal coordinates used (x = 10; y = 10) (Fig.14). 

 

 
Fig.14 Simulation with Multiple Obstacles and Goal at (10, 10) 

    The starting point 

   The goal point 

    The path 

 

    The starting point 

   The goal point 

    The path 

 

    The starting point 

   The goal point 

    The path 
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 Quadrant II 

Goal coordinates used (x = 10; y = -5) (Fig.15). 

 

 

Fig.15 Simulation with Multiple Obstacles and Goal at (10, -5) 

 

 Quadrant III 

Goal coordinates used (x = -7; y = -6) (Fig.16). 

 
Fig.16 Simulation with Multiple Obstacles and Goal at (-7, -6) 

 

 Quadrant IV 

Goal coordinates used (x = -7; y = 8) (Fig.17). 

 

 
Fig.17 Simulation with Multiple Obstacles and Goal at (-7, 8) 

 

Visualization in OpenCV 
In order to get real time image visualization from the camera of 

the robot we need to use OpenCV libraries to import the 

necessary features, after we use the canny instruction to detect 

the edge between obstacles and the ground (Figs.18-19).  

 

Fig.18 Real time image of the gazebo simulation with camera 

normal 

    The starting point 

   The goal point 

    The path 

 

    The starting point 

   The goal point 

    The path 

 

    The starting point 

   The goal point 

    The path 
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Fig.19 Real time image of the gazebo simulation with canny 

CONCLUSIONS 
The study, development and testing conducted in this work 

resulted in the robot being able to navigate successfully in many 

different environments, it demonstrated the ability to reach the 

desired target location using the camera to detect and avoid 

obstacles. In this work, we provide an assessment of how 

successful the objectives of the work research have been 

achieved, and potential areas for future work. 
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Diagrams of the used algorithm  
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ABSTRACT: Breast tumor segmentation in mammography is a critical and challenging task. Due to the similarities of the 
breast and tumor tissues, and the presence of a high amount of noise. Multi Agent System (MAS) is one of the powerful tools of 
Distributed Artificial Intelligence (DAI) employed for Medical Imaging processing. The presented approach is a hybridization 
between the classic Watershed segmentation and the concept of MAS. In the aim of, creating a new automatic tumor segmentation 
model for mammography images. This approach is proceeded as following; first, the classic object oriented watershed 
segmentation is applied on preprocessed mammography images, second, the MAS is introduced. Using two type of interactive 
agents, the MAS behavior is launched: Agent Pixel (AP) and Agent Territory (AT). As a result, the final segmentation is emerging. 
Pixels’ intensity is the only information employed by the two types of agents to generate the final segmentation. . The results were 
encouraging with an accuracy (ACC) of 89% over three datasets, Mammographic Image Analysis Society (MIAS), INBreast, and 
Database of Digital Mammograms of Annaba (DDMA) a local dataset of LRI Lab. 
Keywords: Segmentation; Mammography; Watershed; Multi Agents System. 

 
INTRODUCTION 
From the statistics provided by the World Health Organization 
(WHO), on 2020, that the number of women diagnosed with 
breast cancer was 2.3 million1. Another fact, regarding breast 
cancer is that its early identification can effect positively the 
treatments’ results. The standard test used to detect breast cancer 
at a very early stage is mammography. Mammography presents a 
list of interesting characteristics that can help radiologists and 
practitioners like a High detection rate, Safe to administer, 
Reasonable in cost…2. Computer-Aided Diagnosis (CAD) are 
the systems, which were developed to help radiologist and 
practitioners to deal with a large number of images and to assist 
in images analysis and interpretation 3 - 4 . CAD are used for 
mammography images in all processing phases 5- 6. The same 
concept of CAD is employed for other medical imaging 
modalities like: 3D MRI Preprocessing7, Retinal Fundus images 
enhancement8, CT COVID-19 images segmentation9, and Skin 

Lesion preprocessing, segmentation and classification 10 . The 
urge to create systems and materiel, that go along with, the 
technological growth and Artificial Intelligence (AI) revolution 
sophisticated healthcare systems were introduced to hospitals and 
practices to facilitate the process and decision making11-12-13.  

One of the famous fundamental concept of AI is Distributed 
Artificial Intelligence (DAI). Which was described with the fact 
of AI distributed by an entity or a group of entities. One of the 
strongest tools and the well-known notions of DAI are Agents 
and Multi Agents Systems (MAS)14. Agents and MAS represent 
the concepts and theories of societies, collective intelligence, the 
relationship between individual behaviors and phenomena 
observed at the global level, collaboration, conflict cooperation, 
and coordination15. 

According to Ferber (1995)15, an Agent is a physical or virtual 
entity with: the ability to act in an environment, communication 
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directly with other agents, has its own resources, tends to satisfy 
its objectives, the most important fact of an agent is the 
autonomy… 

In the other hand, a MAS is a system with: an environment, a 
group of agents, a set of relations and operations between the 
agents 15.  

The robustness of Agent and MAS made them an effective tool 

in medical domain. Therefore, they were included in different 

forms and takes Segmentation, Classification, Diagnosis, E-

health, to improve time and quality. Benmazou et al. (2014)16, 

employed MAS and texture descriptors to classify 

mammography images. Bennai et al. (2020) 17 applied a 

segmentation of MRI brain to detect tumors. 

Breast tumor segmentation in mammography is a critical and 

challenging task in healthcare and CAD systems.  Due to 

textured nature of the breast tissues, similarities between tumor 

and breast tissues, and the presence of a high amount of noise. 

An enhanced automatic segmentation is presented in this paper, 

with a hybridization of classic Watershed Segmentation and 

MAS. The experimental results show an encouraging overall 

accuracy statistically and with a collaboration of an MD 

radiologist. The reminder of this paper is structured as following: 

− The detailed proposed Mammography Segmentation 

approach based on MAS and Watershed Segmentation in 

(Section 2); 

− Implementation details, Dataset, Experimental results, 

Analysis and discussions in (Section 3); 

− Finally, conclusion in (Section 4). 

 

EXPERIMENTAL 
This section contains the details of the proposed approach. Fig.1 
represents its flowchart. Mainly, the proposed approach is 
divided into two phases, where the preprocessed mammography 
images Saadi and Merouani (2019) 18  were first passing by a 
classic watershed segmentation; second, a MAS is introduced 
with an Agent behavior was applied to generate the final 
segmentation.  

Watershed segmentation 

The mathematical morphological concept is the base of 

watershed image segmentation. Which is a three dimensions 

visualization, of a two-dimensional large-scale image. These 

dimensions are composed of two spatial coordinates and one 

intensity. The result of this topographic segmentation are 

catchment basins separated by watershed lines. In other terms, 

pixels are assigned to a region or a line. The main objective of 

this segmentation is to find the watershed lines19-20-21.  

 

 

Fig. 1 Flowchart of the proposed approach 

 

Multi Agents Behavior 

The outcome of the watershed segmentation is over-segmented 
images. To overcome this problem, a MAS was introduced as 
following: 

a- Types of Agents: There is two types of reactive and 
interactive agents. Agent Pixel (AP) is a pixel that contains as 
information: the original intensity of the mammography image 
and watershed catchment’s color. Agent Territory (AT) this 
agent owns a set of AP with the same watershed catchment’s 
color, i.e. this set of AP is owned by one and only one AT. 
Another important information within AT is the average 
intensity of these AP (AvrgCatch). 

b- Agents’ environment: the whole number of APs 
represents the environment, except the APs of the background, 
i.e. only the breast area of the mammography.  

c- MAS Segmentation: Before, starting the segmentation, 
the breast area’s intensity average is calculated (AvrgBrst) as the 
environment information seen by all the agents (ATs and APs). 
The following algorithm presents the MAS behavior to emerge 
the final segmentation. This process is launched randomly, 
where, all ATs with low brightness will kill themselves, and only 
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ATs with high brightness stay alive to emerge the final tumor 
zone. 

Algorithm: MAS Segmentation 

If AT.AvrgCatch <= AvrgBrst 
   This.AT (kill.themself) 
   Change area’s color to original mammography 
Else  
    Stay alive and change area’s color to red 
End 

 
RESULTS AND DISCUSSION 

Data Sets and Tools 

The proposed approach was experimented on three different 

mammography datasets with (150) images. Where, (50) from 

Mammographic Image Analysis Society (MIAS), which is an 

organization of UK research groups interested in the 

understanding of mammograms, and had generated a dataset of 

digital mammograms22. INbreast with (50) images, from the 

Breast Center in the University Hospital of Porto Portugal23. In 

addition to, (50) images from the local dataset of LRI Lab called 

Database of Digital Mammograms of Annaba (DDMA), in 

collaboration with University Hospital of Ibn-Roched Annaba 24. 

The approach was in implemented in Netbeans 8 for the part of 

classic watershed (https://bit.ly/3radnzZ). In the other hand, for 

the MAS segmentation NetLogo was employed as a modelling 

environment25, Fig.2 shows the main GUI of our proposed 

approach . On a PC Windows 10 with an Intel Core i5 with 2.2 

GHz processor and 8 GB RAM. 

 

 

Fig. 2 The main GUI on NetLogo of the proposed approach 

Evaluation Measures 

To evaluate the performance of our proposed approach, a 

quantitative analysis was carried out by the mean of the index of 

Accuracy (ACC). Equation eq.1 presents the mathematical 

representation of ACC. 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇           (𝟏𝟏) 

Where: 

TP , TN, FP, FN and represent respectively the True Positives, 

the True Negatives, the False Positives and the False Negatives. 

Performance analysis 

The proposed approach is a mammography breast tumor 

segmentation, by a combination between classic watershed 

segmentation and MAS concept of DAI. It obtains an overall 

ACC around (89%) over the three employed datasets. INbreast 

scored the highest ACC, over the other datasets, around (97%). 

The most important reason for this score is the nature of INbreast 

images, with a high quality even before applying the 

preprocessing. For MIAS the ACC scored around (90%), the 

presence of high amount of noise and the high breast density were 

the reasons to have this outcome for MIAS, and even for DDMA, 

which scored an ACC around (80%).  Fig.3 represents the 

graphic visualization of the ACC of our proposed approach.  

 

 

Fig. 3 The graphical visualization of the results of the proposed 
approach 

 

Fig.4, Fig. 5, and Fig. 6 represent the detailed process of the 

approach for the three datasets INbreast, MIAS and DDMA 

respectively. Sub figure (a) is the mammography image after 

https://bit.ly/3radnzZ
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preprocessing. Sub figure (b) is the result of the classic watershed 

segmentation, as is obviously clear, watershed generates an over-

segmentation in a way that makes the image hard to be 

understood or interpreted. Finally, sub figure (c), which 

represents the final result of the MAS segmentation.  

 

 

Fig. 4 The process of the proposed approach for INbreast 

 

As is presented this segmentation localized relatively the tumor 

in the majority of the cases in a correct way. At this point, we can 

say that our proposed approach overcame practically the over-

segmentation problem. The test phase was with a collaboration 

of an expert MD Radiologist, where, the results were analyzed 

and discussed. 

 

 
Fig. 5 The process of the proposed approach for MIAS 

 

The qualitative comparison between our proposed approach and 

other existing approach in the literature related to mammography 

tumor segmentation in term of ACC, is presented in Table. 1. 

 

Fig. 6 The process of the proposed approach for DDMA 

 

From Table 1, the overall of our proposed approach is 
encouraging. For INbreat our proposed approach scored better 
the approach presented by Dhungel et al. (2017)26 with (97%) 
over (90%) respectively. Dhungel et al. (2017)26 applied a deep 
structured output learning, that is refined by a Conditional 
Random Field, and finally smoothen by an active contour to 
finish the segmentation.  

 

Table 1. Qualitative comparing table between our proposed 
approach and other existing approaches. 

N° References Dataset The approach ACC % 

1 Shrivastava 

and Bharti 

(2020) 

MIAS ROI extraction 

Seeded Region 

Growing 

92.2 

2 Dhungel et 

al. (2017) 

INbreast DL Conditional 

Random Field 

90 

 

3 

Our 

Proposed 

Approach 

(2021) 

MIAS  

Watershed 

and MAS 

90 

INbreast 97 

DDMA 80 

 

The approach presented by Shrivastava and Bharti (2020)27, 

scored a higher ACC for MIAS comparing to our approach with 

(92.2%) over (90%) respectively. Shrivastava and Bharti 

(2020)27 worked on ROI extraction, and automatic seed 

extraction and thresholding in a seeded region growing. Finally, 

our approach presents an ACC of (80%) for DDMA, which is the 

lowest score due to the fact of the high amount of noise and the 
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high breast density. 

Our proposed approach, works excellently comparing to the 

works presented in the literatures. The major problem of 

watershed related to the over-segmentation was overcame 

relatively.    

 

CONCLUSIONS 

The proposed approach is an automatic enhanced watershed 

segmentation with MAS, for mammography images to detect 

breast tumor. The main problem of the over- segmentation in 

watershed was relatively overcame. 

The interactive employed Agents were relying only on pixel 

intensity. They do not use any other information and they do not 

need any learning phase. The results were encouraging and 

promising for future enhancement 
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ABSTRACT: Multiple Sclerosis (MS) is an autoimmune inflammatory disease that leads to lesions in the central nervous 
system. Magnetic Resonance Imaging (MRI) provide sufficient imaging contrast to visualize and detect MS lesions, particularly 
those in the white matter (WM). Medical image segmentation is an essential step for most consequent image analysis tasks. The 
proposed segmentation algorithm is composed of three stages: segmentation of the brain into regions using Fuzzy Particle Swarm 
Optimization (FPSO) in order to obtain the characterization of the different healthy tissues (White matter, grey matter and 
cerebrospinal fluid (CSF)). After the extraction of WM, atypical data (outliers) is eliminated using Fuzzy C-means algorithm, 
and finally, we introduce a Mamdani-type fuzzy model to extract MS lesions among all the absurd data. Although the FCM 
algorithm yields good results for segmenting noise free images, it fails to segment images corrupted by noise, atypical data 
(outliers) and other imaging artifact. The purpose of this study is to segment high dimensional data of WM lesions using Fuzzy 
Possibilistic C-means (FPCM). This approach is a generalized version of FCM algorithm.  The objective of the work presented 
in this paper is to obtain an improved accuracy in segmentation of WM. Comparison results to the method of FPSOFCM showed 
that the defuzzification of the atypical data of the segmentation was 56.79 showing that the proposed FPSOFPCM outperformed 
the other method (FPSOFCM).  
Keywords: Fuzzy Particle Swarm Optimization; Fuzzy Possibilistic C-Means; Multiple Sclerosis Lesions; Segmentation; 
Mamdani.. 

 

INTRODUCTION 
Multiple sclerosis (MS) is an inflammatory, demyelinating and 

neurodegenerative disease of the central nervous system 

involving immune-mediated destruction of myelin and axonal 

damage that affects both white matter (WM) and gray matter 

(GM). MS is characterized by the formation of focal 

inflammatory lesions, also called plaques1. It may cause various 

potential symptoms, including visual problems2, spasms3, 

numbness4, fatigue5, among others. MS is typically diagnosed by 

the presenting symptoms, together with supporting neuroimaging 

methods, such as magnetic resonance imaging (MRI) to detect 

the damaged WM6. 

Both MS lesions and brain atrophy, are usually measured in-vivo 

from MRI by means of automatic or semi-automatic 

segmentation algorithms. The most frequent modalities to 

segment WM lesions include proton density-weighted (PD-w), 

FLAIR and T2-weighted (T2-w), this is because lesions appear 

hyper-intense in these sequences which makes them easier to 

detect1. However, WM lesions in MS can be detected with 

standard MRI acquisition protocols without contrast injection. It 

 

2021 



H. Zouaoui, 1st International Conference and School on Radiation Imaging (ICSRI-2021), 26-30 September 2021, Setif, Algeria 

61 
 

has been shown that many features of lesions, such as volume T. 

Kalincik et al.8 and location P. Sati et al.9 are important 

biomarkers of MS, and can be used to detect disease on set or 

even track its progression. Therefore accurate segmentation of 

WM lesions is important in understanding the progression and 

prognosis of the disease. With T2-w  MR imaging sequences, 

most lesions appear as bright regions in MR images, which is 

useful for automatic segmentation. Although manual delineations 

are considered as the gold standard, manually segmenting lesions 

from 3D images is tedious, time consuming, and often not 

reproducible. Therefore automated lesion segmentation from 

MRI is an active area of development in MS research7. 

In fact, robust and efficient segmentation of various tissues and 

structures in medical images  is of crucial significance in many 

applications, such as the identification of brain pathologies 

fromMR images10.  Actually, image segmentation is  regarded 

a crucial stage in the image processing system that straight for 

efficiently guiding the clinicians in the process of medical 

diagnosis. In Moreover, related tasks such as position detection, 

primitive extraction,  or pattern recognition all strongly 

dependent on the quality of the segmentation. The accurate 

segmentation of lesions in MRI is important for the accurate 

diagnosis, adequate treatment development and patient follow-up 

of the MS disease.  

This paper is an extension of a previous work where we proposed 

a new automated segmentation method that detects the lesions of 

MS11. The previously published MS segmentation algorithm 

follows three stages: We initially segment the brain into different 

tissues classes, namely: WM, Grey Matter (GM) and 

Cerebrospinal Fluid (CSF) using Fuzzy Particle Swarm 

Optimization (FPSO) algorithm. Secondly, we use Fuzzy C-

Means (FCM) algorithm to eliminate the atypical data of the 

white matter. And finally, a decision-making system that uses 

Mamdani-type fuzzy model is employed in order to ascertain 

whether a given voxel is an MS lesion or not11. However, we 

found that our method failed in accurately for segmentation of 

white matter lesions in MR images because the FCM algorithm 

yields good results for segmenting noise free images, it fails to 

segment images corrupted by noise, atypical data (outliers) and 

other imaging artifact.  

  Lesion segmentation plays an important role in the diagnosis 

and follow-up of multiple sclerosis (MS). This task is very time-

consuming and subject to intra- and inter-rater variability. In this 

paper, we present an improved tool for automated MS lesion 

segmentation. Our approach is based on three main steps, initial 

brain tissue segmentation according to the gray matter (GM), 

WM, and cerebrospinal fluid (CSF) performed using the 

algorithm Fuzzy Particle Swarm Optimization (FPSO). This is 

followed by a second step where the lesions are segmented as 

outliers to the normal apparent WM brain tissue  using a Fuzzy 

Possibilistic C-means (FPCM) algorithm and decision-making 

system that uses Mamdani-type fuzzy model. 

     The remaining of this paper is organized as, follows; 

related works are presented in Section 2. The proposed algorithm 

of automatic MS lesion detection and its various steps are 

highlighted in is described I and Section 3. Section 4 reports the 

experimental results. Finally, conclusion and future work are 

summarized in section 6. 

 
RELATED WORK 
There are several methodologies available to detect MS from MR 

images. The degree to which the disease has affected can be 

known by estimating the volume of MS lesion through MR 

imaging and this helps in planning the treatment. Udupa, J.K. et 

al12 have proposed a new system with which MS lesions can be 

segmented from dual-echo fast spin echo MRI and the 

computation of MS lesion volume can be eventually performed.   

Many automated lesion segmentation methods have been 

proposed in the past decade18. There are usually two broad 

categories of segmentations, supervised and unsupervised. 

Unsupervised lesion segmentation methods rely on intensity 

models of brain tissue, where image voxels containing high 

intensities in FLAIR images are modeled as outliers19-20 based on 

the intensity distributions. The outlier voxels then become 

potential candidates for lesions. Eventually the segmentation can 

be refined by a simple thresholding technique21-23. Alternatively, 

Bayesian models such as mixtures of Gaussians24-26 or Student's 

t mixture models27 can be applied on the intensity distributions 

of potential lesions and normal tissues. Optimal segmentation is 

then achieved via an expectation-maximization algorithm. 

Additional information about intensity distributions and expected 

locations of normal tissues via a collection of healthy subjects28 

can be included to determine the lesions more accurately. Local 

intensity information can alsobe included via Markov random 
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field to obtain a smooth segmentation29. Ying Wu et al13 have 

dealt with an automatic segmentation scheme that segments and 

classifies MS lesions into three sub-kinds from T2-w and 

contrast- enhanced T1-w brain images of 12 MR scans. On the 

other hand, S. Sivagowri, et al14 have presented an automatic 

method for segmenting MS lesions from MR images. It uses a 

governed- classifier, namely, support vector machine (SVM) for 

differentiating the blocks that lie in MS lesion regions and non-

MS lesion regions using textural features.  

Supervised lesion segmentation methods make use of atlases or 

templates, which typically consist of multi-contrast MR images 

and their manually delineated lesions. As seen in the ISBI-2015 

lesion segmentation challenge30, supervised methods have 

become more popular and are usually superior to unsupervised 

ones, with four out of top five methods being supervised. These 

methods learn the transformation from the MR image intensities 

to lesion labels (or memberships) on atlases, and then the learnt 

transformation is applied onto a new unseen MR image to 

generate its lesion labels. For instance, logistic regression31-32 and 

SVM33 have been used in lesion classification, where features 

include voxel-wise intensities from multi-contrast images and the 

classification task requires to label an image voxel as lesion or 

non-lesion. Instead of using voxel-wise intensities, patches have 

been shown to be a robust and useful feature34. As such, random 

forests35-37 and k-nearest neighbors38 based algorithms have used 

patches and other features, computed at a particular voxel, to 

predict the label of that voxel. Dictionary based methods39-41, use 

image patches from atlases to learn a patch dictionary that can 

sufficiently describe potential lesion and non-lesion patches. For 

a new unseen patch, similar patches are found from the dictionary 

and combined with similarity-based weighting. In the proposed 

methodology by Colm Elliott et al16, mutual fragmentation is 

performed on the sequential scans for carrying out a temporarily 

reliable tissue segmentation that produces lesions.  

Class-based methods17-19, modeled the lesions as an independent 

class to be extracted. In36, a combination of intensity-based k-

nearest neighbor classification (k-nn) and a template-driven 

segmentation (TDS) was designed to segment different types of 

brain tissue. Lesions were modeled as one of the expected tissue 

types, and the class parameters were obtained through a 

supervised voxel sampling scheme on two randomly selected 

scans. Since the manual training step is highly data-dependent, it 

is expected to be conducted for each study or data set. A summary 

of the aforementioned techniques is given in Table 1. 

 

Table 1: Comparison of MS lesion segmentation methods 

Author Method Sequences Evaluation 

Udupa et 

al.12 

Fuzzy 

Connectedness 

Principles 

T1-w, T2-w 

and PD-w 

NA 

Wu et al.13 KNN T1-w, 

T2-w and 

PD-w 

Spe=0.53 

Sen=0.80 

 

Prastwa et 

al.17 

Bayesian 

classification 

T1-w, T2-w 

and 

FLAIR 

Spe=0.99 

Sen=0.03 

Zhang et 

al.19 

SWE+KNN MS image Spe=0.99 

Sen=0.96 

Souplet et 

al.21 

EM T1-w, T2-w 

and FLAIR 

Spe=0.99 

Sen=0.26 

Jain et al.23 MSmetrix 3D T1-w 3D 

FLAIR 

Sen=0.57 

Pre=0.83 

Strumia et 

al.25 

Geometric Brain 

Model 

T1-w, T2- w 

and FLAIR 

Spe=0.56 

Sen=0.70 

Dworkin et 

al.32 

CV T1-w, T2-w, 

PD-w and 

FLAIR 

NA 

Maier et 

al.35 

ET T1-w, T2- w 

and FLAIR 

NA 

Deshpande 

et al.41 

Sparse 

Representations 

and Adaptive 

Dictionary 

Learning, 

T1-w 

MPRAGE, 

T2-w, PD and 

FLAIR 

Sen=0.60 

 
 
PROPOSED APPROACH  
In this study, we use information from T1- w, T2-w and proton 

density-weighted (PD) images. This is motivated by the fact that 

T1-w, T2-w and PD images contain information about WM 

lesions42.  The proposed approach makes use of both 

unsupervised reasoning offered by a-two step segmentation 

method as well as an approach that mimics expert reasoning in 

order to identify whether a potential voxel is a lesion or not. An 
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optimization based approach involves initial identification of the 

WM class from each of the MR modality using a Fuzzy Particle 

Swarm Optimization (FPSO) algorithm assuming that the voxels 

can be WM, GM or CSF as hypothesized in42. The focus on WM 

is also rooted to related clinical studies43-44,  which indicated 

that the infringement predominantly inflammatory present in the 

WM is likely in relate with the mechanisms of degeneration and 

achievement where the measurement of the load lesional 

provides insights about the degree of progress  of the WM in the 

course of the disease11. Second, following the argumentation 

highlighted by Ait-Ali et al.45, WM tissue is often pervaded by 

atypical data, which often weakens the detection of lesions. 

Therefore, discarding the negative effect of atypical data 

becomes necessary. Lesion or not, a fuzzy like reasoning that 

imitates expert reasoning which gathers global information 

regarding image contrast as well as the signal type before making 

such decision11. Figure 1 shows the proposed workflow for the 

segmentation of MS lesions. The initial images are noisy, the 

inhomogeneities are corrected and all images are registered in the 

same space. Details of the different phases are provided in the 

subsequent subsections. 
 
 
 

Segmentation of the brain by Fuzzy particle swarm 
optimization algorithm  
Brain MRI segmentation is an essential task in many clinical 

applications because it influences the outcome of the entire 

medical analysis pipeline. This is because subsequent processing 

steps rely on accurate segmentation of anatomical regions. For 

instance, MRI segmentation is commonly used for measuring and 

visualizing different brain structures, for delineating lesions, for 

analyzing brain development, and for image-guided interventions 

and surgical planning. This diversity of image processing 

applications has led to development of various segmentation 

techniques with variable accuracies and degrees of complexity. 

In this study, the segmentation of the brain tissues into different 

segments, namely: WM, GM and CSF is a key step in our 

approach. For this purpose, an optimization-based approach 

using Fuzzy Particle Swarm Optimization algorithm has been 

adopted in our approach. This is motivated by its simplicity, 

ability to deal with high dimensional datasets, as well as its 

proven efficiency in similar other segmentation tasks as pointed 

out in 46-47. The application of Fuzzy Particle Swarm 

Optimization (FPSO) approach for clustering in our case yields 

three distinct classes corresponding to WM, GM and CSF. The 

outcome of this segmentation serves as the basis for 

implementing lesion-handling based strategies. 

 

 

 
Fig. 1 Block diagram of the proposed approach for automatic segmentation of MS lesions
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Particle swarm optimization (PSO) 
Particle swarm optimization (PSO) is a population-based 

stochastic optimization technique inspired by bird flocking and 

fish schooling originally designed and introduced by Kennedy 

and Eberhart48 in 1995 and is based on iterations/generations. The 

algorithmic flow in PSO starts with a population of particles 

whose positions represent the potential solutions for the studied 

problem, and velocities are randomly initialized in the search 

space. In each iteration, the search for optimal position is 

performed by updating the particle velocities and positions. Also 

in each iteration, the fitness value of each particle’s position is 

determined using a fitness function. The velocity of each particle 

is updated using two best positions, personal best position and 

global best position. The personal best position, pbest, is the best 

position the particle has visited and gbest is the best position the 

swarm has visited since the first time step. A particle’s velocity 

and position are updated as follows. 

 

( )
( ))()(

)()()()1(
.2.2

.1.1.

tt
tttt

XGbestrandc

XPbestrandcVwV

−+

−+=+
  (1) 

)1()()1( ++=+ tVtXtX             (2) 

Where: 

X and V are position and velocity of particle respectively. w is 

inertia weight, c1 and c2 are positive constants, called 

acceleration coefficients which control the influence of pbest and 

gbest on the search process, P is the number of particles in the 

swarm, r1 and r2 are random values in range [0, 1]. 

PSO can be implemented and applied easily to solve various 

function optimization problems, or the problems that can be 

transformed to function optimization problems50. However, the 

PSO algorithm suffers a serious problem that all particles are 

prone to be trapped into the local minimum in the later phase of 

convergence. The optimal value found is often a local minimum 

instead of a global minimum51. Pang et al.52 proposed a version 

of particle swarm optimization for TSP called fuzzy particle 

swarm optimization (FPSO). 

 

Fuzzy particle swarm optimization for fuzzy clustering 
Peng et al.49 proposed a modified particle swarm optimization for 

TSP called fuzzy particle swarm optimization (FPSO). In their 

proposed method the position and velocity of particles redefined 

to represent the fuzzy relation between variables. In this sub-

section we describe this method for fuzzy clustering problem. 

  In FPSO algorithm X , the position of particle, shows the fuzzy 

relation from a set of data objects, 1 2{o , ,...,o }no o= , to set 

of cluster centers, 1 2{z , z ,..., z }nZ = .  X  Can be expressed 

as follows: 

          

11 1

1

c

n nc

X
µ µ

µ µ

 
 =  
  



  



            (3) 

 

In which μ ij is the membership function of the ith object with the 

jth cluster with constraints stated in (1) and (2). Therefore, we can 

see that the position matrix of each particle is the same as fuzzy 

matrix μ in FCM algorithm. In addition, the velocity of each 

particle is stated using a matrix with the size n rows and c 

columns the elements of which are in range [-1, 1]. We get the 

equations (4) and (5) for updating the positions and velocities of 

the particles based on matrix operations53. 

 

𝑉𝑉 (𝑡𝑡 +  1) =  𝑤𝑤 ⊗  𝑉𝑉 (𝑡𝑡)  ⊕ (𝑐𝑐1 𝑟𝑟1) ⊗

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡)  ⊖𝑋𝑋(𝑡𝑡))  ⊕  (𝑐𝑐2𝑟𝑟2 )  ⊗  �𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡)⊖

 𝑋𝑋(𝑡𝑡)�           (4) 

 

 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋(𝑡𝑡)⊕ X(t + 1)         (5)                                        

 

After updating the position matrix, it may violate the constraints 

given in (1) and (2). So it is necessary to normalize the position 

matrix. First we set all the negative elements in matrix to zero. If 

all elements in a row of the matrix are zero, they need to be re-

evaluated using series of random numbers within the interval [0, 

1] and then the matrix undergoes the following transformation 

without violating the constraints: 

111
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In FPSO algorithm the same as other evolutionary algorithms, a 

function is needed to evaluate the generalized solutions called 

fitness function. In this paper Eq. (7) is used for evaluating the 

solutions: 

       (X)
m

Kf
J

=                              (7) 

There in K is a constant and Jm is the objective function of FCM 

algorithm. The smaller is Jm, the better is the clustering effect and 

the higher is the individual fitness f (X). The FPSO algorithm for 

fuzzy clustering problem can be stated as follows: 

 

Algorithm 1 

Input original image. 
1. Initialize the parameters including population size P, c1, 

c2, w, and the maximum iterative count. 
2. Create a swarm with P particles (X, pbest, gbest and V are 

n*c matrices). 
3.  Initialize X, V, pbest for each particle and gbest for the 

swarm. 
4. Calculate the cluster centers for each particle using Eq. 

(11). 
5.  Calculate the fitness value of each particle using Eq. (7). 
6.  Calculate pbest for each particle. 
7.  Calculate gbest for the swarm. 
8.  Update the velocity matrix for each particle using Eq. 

(4). 
9.  Update the position matrix for each particle using Eq. 

(5). 
10.  If terminating condition is not met, go to step 4.  

Output segmented image 

 

The termination condition in the proposed method is the 
maximum number of iterations or no improvement in gbest after 
a number of iterations. 

Segmentation of the white matter using Fuzzy 
Possibilistic C-Means algorithm 
The next stage in our methodology consists in removing the 

clearly hyper-intense voxels in the previously identified WM 

voxels in order to highlight the different MS lesions. This is 

because the lesions of the MS are not well contrasted due to the 

partial volume in the surrounding tissues, which renders their 

segmentation rather a difficult task. Motivated by the lack of a 

fully comprehensive labeled database as reported in55 a non-

supervised like strategy based on Fuzzy Possibilistic C-Means 

algorithm has been advocated. The FPCM algorithm solves the 

noise sensitivity defect of Fuzzy C-Means algorithm and 

overcomes the problem of coincident clusters of Possibilistic C-

means algorithm54. This is backed by its reported success in 

image analysis and medical diagnosis including magnetic 

imaging regardless of the modality and the type of acquisition 

(mono or multimodal)56-58 its reduced complexity, easy 

implementation (especially for large and high dimension dataset). 

 

Formulating of FPCM algorithm clustering 

Clustering is a process of finding groups in unlabelled dataset 

based on a similarity measure between the data patterns 

(elements)54. A cluster contains similar patterns placed together. 

One of the most widely used clustering methods is the FPCM 

algorithm. The FPCM algorithm solves the noise sensitivity 

defect of Fuzzy C-Means algorithm and overcomes the problem 

of coincident clusters of Possibilistic C-Means algorithm. the 

FPCM algorithm allows to partition the pixels of X into C classes 

(here C=3) pertaining to WM, GM and CSF by calculating the 

centres bj (j=1, C) of j-th class and the membership matrix (U), 

Given a set of N total number of pixels of the image 

{ } x,..., x,x=X N21   the Fuzzy Possibilistic C-Means 

(FPCM) clustering algorithm minimizes the objective function 

given bellowP

32- 33
P: 

( ) ( )ij

C

i

N

j
ij

m
ij bxdtuXTUBJ ,),,,( 2

1 1
∑∑

= =

+= λ                                                       

Where jx  is the j-th P-dimensional data vector, ib   is the 

centre of cluster i, m >1 is the weighting exponent, ∈λ  [3,5] 

is the typicality exponent, ( )ij bxd ,2   is the Euclidean 

distance between data xj  and cluster centre ib  , [ ]CxNU    is 

the fuzzy matrix and [ ]CxNT   is the typicality matrix.      

 
The minimization of objective function ),,,( XTUBJ  can 

be guided by an iterative process in which updating of 

membership degrees
iju , typicality degrees

ijt  and the cluster 

centers are done for each iteration by : 

(8) 
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Where :  
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FPCM algorithm consists then of iteratively applying equations 

(9), (10) and (11) until stability of the solutions. The above 

equations show that membership iku  is affected by all c cluster 

centres, while possibility ikt is affected only by the i-th cluster 

centre ic  . The possibilistic term distributes the ikt   with 

respect to all n data points, but not with respect to all c clusters. 

Thus, membership can be called relative typicality, it measures 

the degree to which a point belongs to one cluster relative to other 

clusters and is used to crisply label a data point. And possibility 

can be viewed as absolute typicality, it measures the degree to 

which a point belongs to one cluster relative to all other data 

points, it can reduce the effect of outliers. Combining both 

membership and possibility can lead to a better clustering result59. 

 

Overall, the FPCM algorithm consists of the following steps and 
rules (Table 2)15: 

Table 2. Rules' base in the form of a matrix. 

 T1-w T2-w DP-w 

Hyper signal Low/Normal High High 

Hyper signal Low High High 

Hyper signal after 

injection of 

Gadolinium 

Normal High High 

 

Algorithm 2 

Input WM image. 

S1: Given a preselected number of clusters 𝑐𝑐 and a chosen 
value for 𝑚𝑚, initialize the fuzzy partition matrix and typically 
the partition matrix with constraint in (13) and (14), 
respectively. 

S2: Calculate the center of the fuzzy cluster, for 𝑖𝑖 = 1,2, 
… , 𝑐𝑐 using Eq. (11).  
S3: Use Eq. (9) to update the fuzzy membership .  

S4: Use Eq. (10) to update the typically membership  .  

S5: If the improvement in is less than a 
certain threshold (є), then stop; otherwise, go to S1 

 Output The images of extracted MS 

 

Decision-making  

The last step determines whether a given WM voxel is an MS 

lesion or not. For this purpose, a Mamdani-type fuzzy inference 

system has been adopted. In the latter, (global) information about 

the image contrast and signal’s type are used as global variables. 

The outcome corresponds to the extent to which the MS attribute 

is persistent in the underlying WM voxel. Especially, the 

weighted images in T2 and PD underline the myelin component 

in the lesions characterized by the edemas with hyper-intense 

appearance in comparison to the WM.  Furthermore, T1-w 

underlines the irreversible destruction of the tissues with the 

appearance in the white matter of persistent "black holes" (Hypo-

signal)50. 

 

 

 

ib

iju

ijt

( , , , )J B U T X
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Fig. 2 Diagram of fuzzy system of the MS disease 

 

An instance of fuzzy rules is described below:  

1. If [(the image contrast is T1-w  active) AND (the signal is 

hyperintense)] then (MS is low). 

2. If [(the image contrast is T1-w active) AND (the signal is 

hyperintense)] then (MS is       normal). 

3. If [(the image contrast is T2-w active) AND (the signal is 

hyperintense)] then (MS is high). 

4. If [(the image contrast is PD -w active) AND (the signal is 

hyperintense)] then (MS is high). 

5. If [(the image contrast is T1-w active) AND (the signal is 

hypointense)] then (MS is low). 

6. If [(the image contrast is T2-w active) AND (the signal is 

hypointense)] then (MS is high). 

7. If [(the image contrast is PD-w active) AND (the signal is 

hypointense)] then (MS is high). 

8. If [(the image contrast is T1-w active) AND (the signal is 

hyperintense after injection of gadolinium)] then (MS is 

normal). 

9. If [(the image contrast is T2-w active) AND (the signal is 

hyperintense after injection of gadolinium)] then (MS is 

high). 

10.   If [(the image contrast is PD-w active) AND (the signal 

is hyperintense after injection of gadolinium)] Then (MS 

is high). 

 

The quantification of image contrast, signal type and the MS 

disease is described in the as follows: 

For the fuzzification of the signal's type, we choose two fuzzy 

intervals and belonging functions of Gaussian types. Figure 3 

shows the fuzzy repartition of the input variable of signal's type. 

 
Fig. 3 Fuzzy repartition of input variable of signal's type11 

 
For the output variable, we choose three fuzzy intervals and 

Gaussian membership functions, which define predicates: low, 

normal and high of the MS disease in comparison to the white 

matter. Figure 4 shows the fuzzy repartition of the output variable 

of the decision of the MS disease. 

 

 
Fig. 4 Fuzzy repartition of the output variable giving the 

decision of the MS disease11 

 

The selected inference method is Mamdani's method. 

Consequently, the operator is realized by the calculation of the 

minimum, whiles the operator OR is realized by the calculation 

of the maximum. The defuzzification step is done using the 

method of calculating the centre of attraction.  

 
RESULTS AND DISCUSSION  
Dataset 

The dataset was provided as part of a collaboration agreement 

between LSI laboratory (Laboratory Intelligent Systems: image 

and signal team) Ferhat Abbas University of Sétif and LAMIH 

UMR CNRS 8201 (Laboratory of Industrial and Human 

Automation control, Mechanical engineering and Computer 

Science) University of Valenciennes. The various T1-w, T2-w 

    Fuzzy 

System 

 

T1-w 
MS 

 
T2-w 

PD-w 

Signal’s type 

Exclusive 

Image contrast 

Fuzzy rules base 
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and PD images corresponding to relatively older patients. These 

images are in the form of DICOM (Digital Imaging and 

Communications in Medicine) and were already pre-processed 

and spatially normalized. 

 

Computational requirement 
The proposed algorithm was implemented in Net-Beans IDE 8.2 

and run on a laptop with 2.40 GHz Intel(R) Core (TM) i5-4210U 

CPU and 4 GB RAM. The operating system was 64-bit Windows 

8.1. To compare the performance of these images, we compute 

different coefficients reflecting how well two segmented 

volumes match. Four measures are used as follows43: 

( )
TP

Overlap ovrl
TP FN FP

=
+ +

    (15) 

                  

2.
( )

2.

TP
Similarity Si

TP FN FP
=

+ +
  (16) 

                         

( )
TP

Sensitivity Sen
TP FN

=
+

      (17)
 

 

(Spc)
TN

TN FP
Specificity =

+
       (18) 

 

Where, TP (True Positive) means an MS patient is correctly 

identified as MS, FP (False Positive) means healthy people were 

incorrectly identified as MS, TN (True Negative) means healthy 

people were correctly identified as healthy, and FN (False 

Negative) means MS patients incorrectly identified as healthy. 

 

Analysis of the results 
The brain segmentation was successfully applied on some real 

images and results are shown in Figure 5. 

 
Automatic tissues and white matter lesion 
segmentation by FPSO and FPCM algorithms 
The following figure 5 illustrates axial slices of the segmentation 

results by the FPSO algorithm for the T2-w, PD-w and T1-w MR 

images in order to obtain a characterization of the different 

healthy tissues WM, GM and CSF. After the segmentation by 

FPSO algorithm we extracted the WM. Then, the use of FPCM 

allowed us to eliminate the atypical data of the WM for each 

image (T2-w, PD-w, T1-w) as exhibited in figure 5. 

 

Fig. 5 Scheme of the full MS lesion segmentation process. The left 

column shows the the used strategy for of tissues (WM, GM, and 

CSF) segmentation steps, while the right column depicts the used 

strategy for MS lesion segmentation. 

  

Comparative results are presented in Table 3 below: 

 

Table 3. Comparison of the results obtained by FPSO and FPCM 

algorithms 

  GSF WM GM MS lesions 

 

T1-w 

 

Si 0.81 0.91 0.85 0.93 

Ovrl 0.63 0.88 0.84 0.94 

Sen 0.70 0.95 0.91 0.91 

Spc 0.75 0.96 0.90 0.93 

 

T2-w 

 

Si 0.92 0.94 0.92 0.99 

Ovrl 0.89 0.93 0.90 0.95 

Sen 0.90 0.93 0.92 0.94 

Spc 0.92 0.96 0.93 0.96 

 

PD-w 

Si 0.77 0.81 0.81 0.96 

Ovrl 0.58 0.77 0.70 0.95 

Sen 0.66 0.83 0.72 0.85 

Spc 0.88 0.86 0.85 0.93 
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The results obtained by FPSO and FPCM algorithms are very 

satisfactory and confirm the validity of the algorithms, its ease of 

implementation gives us a substantial advantage. We have made 

an improvement in optimizing the white matter and atypical 

localization data for all tissues using T1-w, T2-w and PD-w. 

 

Decision-making 
The implementation of the Mamdani fuzzy inference system 

makes use of min operator for AND connective and max for OR 

connectives. The result of the implementation is shown in Table 

4. 

 

Table 4.  Results of MS lesions of the defuzzification values for the 

different sequences 

 T1-w(%) T2-w(%) PD-w(%) 

MS 49.64 59.51 51.71 

 

Involving people with MS proactively in decision-making 

and in managing their disease is also key to the successful 

management of MS. The decision-making depends always on the 

expertise, it is evident from the Table 4 that the patient suffers 

from the multiple sclerosis and the MS lesions are detected in all 

the sequences by a normal or a high characterization. 

 

Experimental Results 
In this section, we compare the proposed algorithm with the 

FPSO, FPCM, FPSOFCM algorithms and the segmentation 

realized by the expert on a set of MRI brain images. In order to 

study the robustness of the proposed algorithm for MRI brain 

segmentation, test images (256x256 pixels) are from three MRI 

modalities (T1-w, T2-w and PD-w), corrupted by different levels 

of white Gaussian noise (0%, 3%, 4%) and intensity non-

uniformity (RF)(0%, 20%, 40%). Segmentation results are 

shown in Figure 6. 

 

 
Fig. 6 Comparison of segmentation results on T1-w, T2-w and PD-w 

images. 

 

The interpretation of our results is done by an expert (hospital 

center of Ain Naadja  Algiers) on simulated and real images. By 

analyzing the images of figure 6, the expert has established the 

following statement: 

_ Image (d): The interpretation of the classes is totally improved 

in relation to (FPSO, FPCM), we notice the distinction between 

the three classes of the brain and the class of the pathology SEP. 

_ Image (g): FPSO is unsuitable in this segmentation in relation 

to the image (FPSOFCM). 

_ Image (j) : The FPCM does not bring much compared to the 

FPSO. 

_ Image (m): The class CSF does not conform to the class of the 

original image. The lack of information about the small grooves 

(image (a)) and the poor discrimination CSF/GM make that the 

segmented CSF class does not well represent the fluid 

distribution. The distributions of the WM and GM get closer to 

those given by the original image. The detection of the pathology 
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is indicated according to the expert but the details are not well 

expressed. 

_ Image (p): the proposed approach brings a great performance 

to the segmentation for the three classes and especially for the 

fourth one which is the pathology that specifies well the size and 

the details about this later. 

Next, we compare in figure 7 the segmentation of T2-w MRI 

between segmentation made by the expert, FPSO, FPCM, 

FPSOFCM for a given time of acquisition and the segmentation 

by the proposed approach.  

       

 

Fig. 7 Performance measures of the results gotten by different 

algorithms 

 

Table 5 summarizes the results of the lesion detection algorithms 

reviewed in terms of reproducibility and agreement with the 

experts. The results highlighted in this Table and Fig.7 underline 

the advantages of the proposed approach in comparison to the 

segmentation by FPSO, FPCM and FPSOFCM for all tissues CSF, 

WM, GM and MS lesions. From these outcomes, it is evident that 

our extension of a previous work provides a very good 

performance method for the segmentation of abnormal anatomy 

in MRI data, such as MS lesions. 

 

Table 5. Comparison of the results gotten by different algorithms. 

  GM (%) CSF (%) WM (%) MS (%) 

FPSO 83.7 69 87 77 

FPCM 70.2 55.9 81.5 76 

FPSOFCM 85.2 64.1 88.4 90.6 

Proposed approach 89.9 69 95 97.9 

 

CONCLUSIONS 
The goal of the research presented in this article was to propose 

an automatic approach of segmentation of the MS lesions images 

based on FPSOFPCM algorithm.  Comparison results to other 

similar approaches shows that the proposed method outperforms 

is better than the other previous ones in extracting MS lesions. 

The prospects of improvement and development of this work are 

multiple: we can consider improving the post-treatments done 

after the detection of outliers in order to keep only the SEP lesions. 

At present, only the outliers for which the segmentation of the 

WM given by the FPCM algorithm will be kept. The main 

limitation of this method is that it depends on the employed 

method of registration. Another solution may consist of using the 

obtained segmentation of tissues. Thus, we can keep the outliers 

situated in the mask of the obtained segmentation of the WM. 
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ABSTRACT: In CT-scan, applying the ALARA-principle (i.e. the dose to the patient should be as low as reasonably 
achievable) is of the most interest to take benefit from the diagnostic capability of medical imaging by avoiding any post-
diagnostic hazard due the absorbed dose. In such medical imaging modality effective delivered dose is a single parameter that 
can be used to assess the relative risk from exposure to ionizing radiation. In this study, we will apply computed tomography dose 
index (CTDI) method to determine effective dose in case of head CT-Scan. The objectives of this study are the measurement of 
the effective dose by TL and OSL dosimetry and CTDI method and the comparison of the measured doses to the scanner’ 
calculated ones as well as to some worldwide measured doses for the same head CT-scan protocol. The average absorbed dose 
and the CTDI values were evaluated for the head scan protocol around a Siemens CT Scanner (Somatom128) used for 
radiotherapy simulation at the Fighting Against Cancer Medical Centre, Setif, Algeria. The calculated effective dose were found 
in good agreement with some international values. According to the results of the present study, the determined CTDI for head 
CT-scan and the measured TL and OSL point-doses allow the accurate determination of the effective dose. The Siemens dose 
control and optimization system “CARE Dose-4D” was found to be adequate for effective dose estimation and optimization. The 
followed methodology of CT-scan effective dose determination based on CTDI and TL&OSL dosimetry was found to be 
appropriate for modern CT scanners.  
Keywords: CT-scan; Head CT-scan; effective dose; Clinical CT-scan objective; TL/OSL dosimetry. 
 

INTRODUCTION 
Currently, it is universally accepted that the generalization of 
computed tomography (computed tomography), while it has led 
to considerable medical progress, has been accompanied by an 
increase in the radiation dose delivered to patient. In addition, if 
the CT-scan is combined with radiotherapy treatment, the 
effective dose delivered during CT-scanning, for some cases of 
radiotherapy treatment, should be taken into account in the total 
treatment dose. It, therefore, becomes particularly important to 
know and optimize the dose to be delivered in CT-scan. Modern  

 

scanners display dosimetric data relating to a given examination 
at the desk and allow a rough estimate of the average effective 
dose delivered (per organ and for the whole body). This 
calculation involves the use of a formalism based on the 
calculation of CTDIs and PDLs (Dose length product) for a 
water equivalent dose deposition media represented by simple 
cylindrical geometries with diameters of 16 cm and 32 cm (adult 
head and neck and pediatrics). This estimation by pure 
calculation also involves the consideration of the kV and mAs 
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CT-scan data. To have even more representative and precise dose 
values, CTDIs are also measured on a real phantom. The 
Polymethyl methacrylate (PMMA) CTDI phantoms, generally 
supplied with CT scanners present problems of adequacy with 
the structure, morphology and heterogeneity of the human body 
made-up of biological matters of different densities (bones, 
muscles, air, liquids, etc.)1-2. The actual study was carried out at 
the radiotherapy department at the fighting against cancer 
(CLCC) of Sétif  and at the high-resolution dosage, analysis 
and characterization (LDAC) laboratory of Ferhat Abbas-Sétif1 
University. The objective of this work is the evaluation of the 
effective dose delivered following a CT-scan examination of the 
head by CTDI method, and OSL and TL luminescence dosimetry. 
The additional value of this experimental study is also to 
determine the additional dose administered to a patient to be also 
treated with external radiotherapy. In this context, we chose to 
work with the radiotherapy simulation CT scanner “Seimens 
Somatom Definition AS128” used in the radiotherapy 
department of the CLCC-Sétif. The dose measurements were 
performed on the anthropomorphic Rando phantom. Indeed, the 
structure and morphology of this phantom are closest to those of 
human. This is to obtain results close to the doses really delivered 
during CT-scan and, thus, to partially overcome the problem of 
the homogeneity of conventional CTDI phantoms. 

The doses determined by the CTDI method following dose 
measurements by TL and OSL dosimetry are compared to those 
calculated by the scanner system. Comparisons with other 
international results are also made for the same considered test 
case. 

MATERIAL AND METHODS 
In this work, we have used the following material: 

1. The TLD-700 (LiF:Mg, Ti) and OSL-BeO dosimeters for 
measuring absorbed point-doses. 

2. Luminescence reader OSL/TL Risø DA-20 from for the 
measurement of TL/OSL signals and the determination of the 
point-dose. 

3. The Rando anthropomorphic phantom to simulate the human 
body with its heterogeneity. 

4. The Siemens Somatom Definition AS 128 radiotherapy 
simulation CT-scanner3. 

TL and OSL dosimetery  

For TL and OSL dosimetry, two types of dosimeters are used: 

1. TLD-700: The TLD-700 are based on Lithium Fluoride but 
composed mainly of the isotope Li-7 (99.99%)4. TLD-700 (LiF: 
Mg, Ti) is considered to be a virtually tissue-equivalent material 
(Zeff = 8.2)5. The TLD-700 is suitable for gamma, beta, and 

environmental dosimetry applications4. The TLD-700 dosimeters 
used are manufactured by BICRON-NE HARSHAW (USA) in 
different forms (chips, powder, and sticks). In our work, we used 
discs with a diameter of 3.2 mm and a thickness of 0.9 mm.  

2. Beryllium oxide OSLD: BeO optically stimulated 
luminescence (OSL) can be used for photon and beta dosimetry in 
scientific, medical and industrial applications. Due to the effective 
atomic number (ZEff =7.14), BeO can be considered a human 
tissue equivalent in dosimetric practice6. In this work, we have 
used BeO OSL dosimeters of German origin and marketed by a 
Turkish company Radkor Co. These dosimeters are in the form of 
a square ceramic pellet with dimensions of 4 mm × 4 mm × 1 mm 
and a mass of 32 mg7. 

The Risø TL / OSL reading system was originally developed 
for dating geological and archaeological samples (Fig.1). It has 
also been used for retrospective dosimetry and for characterizing 
the luminescence of materials. This reader, which allows both 
thermoluminescence (TL) and optically stimulated luminescence 
(OSL) measurements, is equipped with a 48-positions rotating 
carousel to automatically process as many samples. The emitted 
luminescence is measured by a light detection system composed 
of a photomultiplier tube and suitable detection filters. The light 
stimulation of the reader includes a source emitter and heating 
plate that can be used separately to make optically stimulated 
luminescence (OSL) or thermally stimulated luminescence TL. 
Both luminescence are used in this work for dosimetry purpose. 
Additional in-situ irradiations can be also ensured for test and 
calibration by a beta source and an X-ray generator. 

 

 

Fig. 1 Used RISØ TL/OSL-DA20 Reader, a) Reader, b) 
Controller, c) The X-ray generator controller 
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Table 1 below shows the main characteristics and main operating 
conditions of the Risø TL/OSL DA-20 reader. The delivered dose 

rate for test and calibration are also given. 

 

Table 1. Main characteristics of the RISØ TL/OSL DA-20 reader 

Photomultiplier 
CsSb crystal with maximum detection efficiency between 200 and 400 nm 

and 0.4sr as solid detection angle 

Heater material 
Khantal with maximal temperature of 700°C and heating rate varying from 

0.1 to 10°C/s  

Beta source 90Sr/90Y, Emax: 2.27 MeV, Strength: 1.48GBq, Dose rate 0.1Gy/s in the quartz 

X-ray Generator Tungsten, 50 kV, 1 mA, 50 W, Dose rate in the quartz 2Gy/s  

CT-Scan and Rando phantom irradiation  

The Rando anthropomorphic phantom is a phantom that well 
simulates the human body with its various densities. The main 
characteristics and advantages of this phantom are: 

1. Meeting global radiotherapy quality assurance standards: 
The Alderson Radiotherapy Phantom (ART) and its earlier version 
Alderson Rando have been used for more than 30 years in 
radiology and radiotherapy quality assurance (Fig.2). ART has 
been refined and improved in the design of its materials. This 
phantom is an essential quality assurance tool; around 10,000 are 
used worldwide. It provides integrated testing of the entire chain 
in CT-scan and radiotherapy treatment planning. Rando 
anthropomorphic phantom is made from a material equivalent to 
tissue; it is designed under very sophisticated technological 
constraints and follow ICRU-44 standards. It is also designed for 
precision and ease of use8. 

 

 

Fig. 1 Used male ART representing a man 175 cm high and 73.5 kg in 
weight 

2. Anatomy: The ART phantom is cut horizontally into slices of 
2.5 cm thick (Fig.1). Each slice has holes that are plugged with 
Bone tissue-equivalent material, Soft tissue-equivalent material, 
Lung tissue-equivalent material, and TLD and OSLD 8. 

3. Materials: 

Soft Tissues: There are limitless small variations in density and 
absorption throughout the human body. The soft tissues of the 
phantom are tightly controlled to have the average density of these 
tissues. 

 Skeletons: Skeletons are highly detailed polymer casts that 
mimic the shape, mass density, and attenuation coefficients of 
cortical bone and sponginess. They allow the continuous 
production of phantoms, instead of the sporadic production 
required by the limited availability, variable size and uncertain 
chemical composition of human skeletons. These problems, along 
with the loss of squash in dried natural skeletons, make the upper 
skeletons “real bone”. The molds for cortical bone and spongiosity 
were made from human skeletons that are compatible with the 
sizes of the soft tissue molds. The skeletons closely conform to the 
standards set by the International Commission on Radiation Units 
and Measurements (ICRU Report No. 44). the mass density is 
slightly reduced to account for a small decrease in calcium content 
in older patients8. 

4. Slots for passive dosimeters: The phantom contains cylindrical 
holes for the location of TL/OSL dosimeters. These holes are 
originally filled with rods to be removed and cut for the location 
of the dosimeter at the required location on the axis. Z scan holes. 
The holes can accommodate dosimeters up to 5mm in diameter 
with varying thicknesses. The location holes go through the slices 
of the phantom end to end, about 2.5 cm thick8. 

5. Assembly: The slices of the ART phantom are held between two 
aluminum plates by nylon tie rods (threaded rods). The nuts at the 
end of the threaded rods firmly clamp the slices in proper 
alignment8. 

The necessary ART phantom CT-scans were performed around 
Seimens scanner principally devoted to radiotherapy treatment 
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simulation. Siemens has simplified its range of scanners. They are 
all called "Definition" and have many characteristics in common. 
They all have a tunnel with a diameter of 78 cm and have the same 
restraint options and the "interventional" option with in particular 
a box placed on the bed, which controls the table and the 
acquisition system. They all use the "Straton" tube, which has the 
particularity of having a directly cooled anode. It is actually the 
entire tube that rotates so that the flow of electrons does not always 
hit the same part of the anode. 

With a dissipation of 7.3 MHU/ min (170 kW), the anode does not 
need to have a large heat capacity and the tube is therefore smaller 
and lighter than its competitors. It has a floating focal spot which, 
with a frequency of 4600Hz, allows switching from one position 
to another and thus being able to obtain two cuts per detector strip. 

The power of the generator is 80 kW except for the "Definition AS 
128" and they have the UFC detector (The detectors are made of 
Low Resistance Ceramic Material allowing the acquisition of 
nearly 4,608 projections per turn, and access to the Ultra High 
Definition imaging with fast acquisitions) 

The Siemens Definition AS 128 scanner produces up to 128 slices 
with a 64-strip detector covering 38.4 mm per rotation, and a 78 
cm-wide tunnel for better handling and comfort. 

Some features and details of the scanning mode are presented 
below: 

1. Acquisition console and scanning execution: In terms of 
console, Siemens is launching a Syngo post-processing server, 
through its new generation of application servers. The server has 
the computing power and can be accessed by any computer 
(subject to not exceeding the agreed number of concurrent use 
rights). A large number of image processing software are already 
available on this architecture. The acquisition station allows 
complete management of the control of the scanner. This computer 
console actually contains multiple features aimed at simplifying 
routine clinical use and providing optimal performance3. 

2. Scheduling of the CT examination: 

- Choice of protocols by anatomical regions. 

- Possibility to save modified protocols. 

- Possibility of rebuilding with an extended Hounsfield unit scale. 

The « Definition » scanners all have « CARE » devices to limit the 
dose delivered to patients’ which are the followings: 

CARE Topo: the topogram can be stopped at any time without 
blocking the device (dose saving) 

CARE Bolus: For all injected exams, monitoring of the arrival of 
the contrast product and automatic triggering of the spiral when 
the desired opacification is reached. 

CARE Profile: Visualization of the dose distribution along the 

topogram before acquisition. 

CARE Dose4D: for anatomical modulation of exposure in real 
time. This allows you to adjust the dose depending on the patient's 
anatomy and position during acquisition. 

CARE Dashboard: Visualization of dose reduction tools activated 
in real time. 

CARE kV (Kilovolt Optimization): Automated organ-based 
voltage adjustment, improving image quality and contrast-to-noise 
ratio while reducing dose. 

Dose measurement and determination methods 

The absorbed effective dose was determined experimentally by TL 
and OSL dosimetry and calculated by the scanner on-board 
scanner algorithm (CARE Dose-4D). For the TL and OSL 
dosimetry, the dose was measured after the calibration the 
dosimeters, the subtraction of their backgrounds, the 
determination of their elementary correction factors, and the 
establishment of their responses. CARE Dose-4D calculate the 
computed tomography dose index (CTDI) for the determination 
of effective absorbed dose9. 

The on-board program (algorithm) for calculating the dose of the 
scanner estimates the absorbed dose (D) according to the scanning 
protocol used and the scanning parameters that refer. This program 
also uses topogram data and other dose optimization (reduction) 
algorithms ensuring optimum image quality. In fact, the automatic 
tube current modulation (MACT) and angular modulation allow 
such optimization. Since the effective mAs and the intensity of the 
anode current vary according to the thickness of the tissues crossed, 
these algorithms allow dose reductions varying between 10 and 60% 
and this, depending on the patient's morphology and the examined 
region. The CARE Dose-4D dose calculation module (Siemens) 
combines two actions: the first is an automatic adjustment based 
on the size of the patient and the absorption measured in a single 
topogram; this step determines the maximum mA of each slice; the 
second is a real-time adjustment based on the attenuation of the X-
ray beam according to the different regions crossed10. 

    For estimation of the effective delivered dose (E) to the 
studied phantom, CARE dose-4D compute first the values of 
volumetric CTDI (CTDIvol) and the corresponding Dose Length 
Product (DLP) from the calculated aborbed dose (D) from the 
phantom scan parameters used with the selected protocol. 
Calculation steps given by equations (1-6) are followed. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑚𝑚𝑚𝑚𝑚𝑚) = ∫ 𝐷𝐷(𝑧𝑧)
𝑁𝑁.𝑇𝑇

+∞
−∞  𝑑𝑑𝑑𝑑              (1) 

CTDI100 (mGy) = ∫ 𝐷𝐷(𝑧𝑧)
𝑁𝑁𝑁𝑁𝑇𝑇

+50
−50  𝑑𝑑𝑑𝑑            (2) 
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 CTDIw = 1
3
 CTDIc100 + 2

3
 CTDIp100          (3) 

CTDIn = CTDIw / mAs                  (4) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑚𝑚𝑚𝑚𝑚𝑚) = 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶𝑤𝑤
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ

                (5) 

DLP (mGy.cm) = CTDIvol×L            (6) 

E = DLP * k                         (7) 

Where:  

 D(z) : Absorbed dose calculated on the Z scanning axis 

 N : Number of CT slices 

 T : Slice thickness 

 CTDI100 : Computed Tomography Dose Index over 100 mm 

 CTDI100C: CTDI100 at the centre 

 CTDI100P: CTDI100 at the periphery 

 CTDIw: Weighted Computed Tomography Dose Index 

 CTDIn: Standardized Computed Tomography Dose Index 

 mAs: X-ray tube charge in milliampère-second 

 L: Scanner length 

 k: Weighting factor depending on the scanned organ. 

EXPERIMENTAL 
CT-scan and dose determination by CARE dose-4D 

In the TL and OSL dosimetry work that we performed on the 
Rando phantom, we chose to use a brain scan with the “Head” 
Protocol. Indeed, in radiotherapy, toxicity at small doses is rather 
problematic for this region of the human body. The TLD and 
OSLD dosimeters were placed in three (3) positions to obtain the 
necessary point-doses to apply the CTDI method. The Siemens 
Somatom Definition AS' scanner dedicated to radiotherapy 
simulation allows on the one hand the volume acquisition of the 
external contours, anatomical structures and target volumes of 
patients and on the other hand the construction of reference images. 
This data will then be used to calculate dose distributions and 
position the patient under the treatment device. 

   A “Brain SPC” scanning protocol for an adult is used for this 
TL / OSL dosimetry work with standard scanning parameters that 
are already used in clinical practice. The scanner to calculate the 

CTDI and the DLP, and thus estimate the effective dose E by the 
algorithm implemented on the scanner uses the selected scan 
parameters. Table 2 provides the scanning parameters: kV, mAs, 
slice thickness, pitch and scan length, which we had used and 
which are adopted in clinical practice. 

 

Table 2. CT-scan parameters 

TL Dosimetry 

Scanning Protocol Cerebral_SPC (Adult) 

kV 120 Kv 

mAs 423 mAs (Topo à 100 kV) 

Slice thickness 1 mm 

Topogram lenght L 25.6 cm 

Pitch 0.55 

OSL Dosimetry 

Scanning Protocol Cerebral_SPC (Adult) 

kV 120 kV 

mAs 363 (Topo à 100 kV) 

Slice thickness 1 mm 

Topogram lenght L 22.5 cm 

Pitch 0.55 

 

Dose measurement by TL-OSL dosimetry and CTDI 
method 

The CTDI method is applied in this work to determine the 
effective dose for the CT examination in question. The CDITs are 
determined by TL and OSL dosimetry performed on the Rando 
phantom by measuring the dose on the three points A, B, and C. 
The TL / OSL intensities measured around the Riso DA-20 reader 
are converted into dose using the established response curves and 
elementary correction factors for the intensities measured for each 
dosimeter (ECF). For the determination of the dose, it is necessary 
to take into account the fact that the dose rates are given in relation 
to quartz, that the exposures are carried out in the materials of the 
dosimeters (LiF and BeO), and that the doses which interest us are 
those which should be absorbed by the material of the 
phantom(water equivalent). In addition, we must also consider the 
variation in energy between that used in the calibration of 
dosimeters (50keV) and those used in the scanning examination 
(120 keV). 

   For each type of dosimeter, (TLD and OSLD) two dose 
correction factors (CF) are therefore necessary. These correction 
factors are given by the following formulas: 
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𝐶𝐶𝐶𝐶1 = 𝐶𝐶𝐶𝐶 � 𝐿𝐿𝑃𝑃𝐿𝐿
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑧𝑧

�
50𝑘𝑘𝑘𝑘𝑘𝑘

=  
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝐿𝐿𝑃𝑃𝐿𝐿)
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑧𝑧) = 0.486  (8) 

𝐶𝐶𝐶𝐶2 = 𝐶𝐶𝐶𝐶 �𝑊𝑊𝑄𝑄𝑃𝑃𝑘𝑘𝑄𝑄
𝐿𝐿𝑃𝑃𝐿𝐿

�
120𝑘𝑘𝑘𝑘𝑘𝑘

=
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝑊𝑊𝑄𝑄𝑃𝑃𝑘𝑘𝑄𝑄)
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝐿𝐿𝑃𝑃𝐿𝐿) = 1.16    (9) 

𝐶𝐶𝐶𝐶3 = 𝐶𝐶𝐶𝐶 � 𝐵𝐵𝑘𝑘𝐵𝐵
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑧𝑧

�
50𝑘𝑘𝑘𝑘𝑘𝑘

=
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝐵𝐵𝑘𝑘𝐵𝐵)
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃𝑧𝑧) = 0,192 (10) 

𝐶𝐶𝐶𝐶4 = 𝐶𝐶𝐶𝐶 �𝑊𝑊𝑄𝑄𝑃𝑃𝑘𝑘𝑄𝑄
𝐵𝐵𝑘𝑘𝐵𝐵

�
120𝑘𝑘𝑘𝑘𝑘𝑘

=  
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝑊𝑊𝑄𝑄𝑃𝑃𝑘𝑘𝑄𝑄)
𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌

(𝐵𝐵𝑘𝑘𝐵𝐵) = 1,17  (11) 

These factors allow the dose to be corrected, for the two types of 
dosimeters used, as follows: 

𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷(𝐶𝐶𝑇𝑇) = 𝐶𝐶𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝑇𝑇) × 𝐶𝐶𝐶𝐶[𝑇𝑇𝐿𝐿𝐶𝐶/𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝑄𝑄𝑑𝑑]50𝑘𝑘𝑘𝑘𝑘𝑘 ×
𝐶𝐶𝐶𝐶[𝑊𝑊𝐷𝐷𝑄𝑄𝐷𝐷𝐷𝐷/𝑇𝑇𝐿𝐿𝐶𝐶]120𝑘𝑘𝑘𝑘𝑘𝑘            (12) 

𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷(𝑂𝑂𝑂𝑂𝑇𝑇) = 𝐶𝐶𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷(𝑂𝑂𝑂𝑂𝑇𝑇) × 𝐶𝐶𝐶𝐶[𝐵𝐵𝐷𝐷𝑂𝑂/𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝑄𝑄𝑑𝑑]50𝑘𝑘𝑘𝑘𝑘𝑘 ×
𝐶𝐶𝐶𝐶[𝑊𝑊𝐷𝐷𝑄𝑄𝐷𝐷𝐷𝐷/𝐵𝐵𝐷𝐷𝑂𝑂]120𝑘𝑘𝑘𝑘𝑘𝑘              (13) 

 

Once all the doses have been measured and corrected, the 
CTDIw, CTDIvol, DLP and effective dose E are determined by 
the following formulas: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊 = 1
3
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷 + 2

3
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1

3
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵 + 2

3
�1
2

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 +

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)�                                (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/0.55            (15) 

𝐶𝐶𝑇𝑇𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑇𝑇             (16) 

𝐸𝐸 = 𝐶𝐶𝑇𝑇𝐷𝐷 × 𝑘𝑘                (17) 

For the adult head protocol, k = 0.0021 mSv.mGy-1.cm-1. 

For each type of dosimetry and after the step of calibrating and 
establishing the response curves of the TLD and OSLD 
dosimeters, the latter were placed on the Randon phantom and 
exposed according to the scanning protocol already described in 
the previous sections. The dosimeters were placed at the 
different holes of the slice number 4 located at the level of the 
phantom head. Dosimeters A and C are placed on the periphery 
of the slice and dosimeter B in the center as shown in figures 2 
(Top face of the slice) and 3 (bottom face of the slice). After the 

preparation and assembly of the Rando phantom, it was exposed 
according to the selected head-scan protocol with the 
recommended clinical position. The topogram is first collected 
then the CT-scan was done after preforming the necessary 
adjustment. After CT-scan, the dosimeters were collected in 
order to read the induced TL and OSL signals. 

 

 

Fig 2 Phantom slice on which the dosimeters are placed: Top face 

 

 
Fig 3 Phantom slice on which the dosimeters are placed Top: 

Bottom face 

 

TL-OSL Dosimeters calibration and dose responses 
establishment 

In this CT-scan effective dose measurement, three (3) dosimeters 
are used for each TL or OSL dosimetry. For the calibration of these 
dosimeters, these dosimeters were irradiated in situ with X-rays. 
The X-ray generator of the Riso DA-20 reader was used to deliver 
the required doses under a voltage of 50 kV and a variable current. 
This generator is equipped with a collimator, a mechanical shutter; 
a controlled high voltage power supply, a control and command 
system, and a safety interlock system11. The dosimeters are placed 
on stainless steel discs 9.7 mm in diameter. Luminescence signals 
are recorded as a count as a function of temperature (TL) or time 
(OSL). The exposure rate is given relative to quartz. The distance 
between the x-ray tube and the sample is 35.5 mm, and the average 
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dose rate in quartz is 2 Gy /s12.  

Prior to use, the dosimeters were annealed using a Riso TL / OSL 
DA-20 reader to remove any residual TL / OSL signal and leave 
only background noise. Thus, thanks to a tweezer, the dosimeters 
are placed on the carousel for their emptying by gradually heating 
them up to 450 ° C with a heating rate of 5 ° C/s. This step is 
necessary. To empty the dosimeters and know the background 
noise level and its adequacy with the measurements that will be 
carried out. The following figure 4 represents the background 
noise signals for the TL and OSL dosimeters obtained.  

 

 

Fig. 4 Background noise signals for TLDs and OSLs 

 

Dosimeters, by virtue of their geometric and structural properties, 
do not respond identically and in the same way to the same dose. 
This is why it is generally recommended by the dosimeters to 
choose to use a reference dosimeter and to align the responses of 
the other dosimeters with respect to this one for the same dose. 
Thus, elementary correction factors can be identified for all the 
dosimeters used to overcome this drawback and have precise and 
uniform measurements. To determine the elementary correction 
factors, all three TL dosimeters were exposed to the same x-ray 
dose of 500 mGy using dosimeter A as a reference. The same goes 
for OSL dosimeters with a dose of 100 mGy and dosimeter A as a 
reference. Table 3 shows the TL intensities of dosimeters A, B and 
C for a dose of 500 mGy. 

 

Table 3. TL intensities of dosimeters A, B, and C for a dose of 500 
mGy 

 Dosimeter Measured Intensity 

T

L

D 

A (reference) 466142 

B 357013 

C 476664 

O

S 

L 

A (reference) 1378 

B 1287 

C 1357 

The elementary correction factor for each used dosimeter (ECF) is 
given by: 

𝐸𝐸𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿/𝐵𝐵𝑂𝑂𝐿𝐿 = 𝐶𝐶𝑇𝑇𝑇𝑇/𝑂𝑂𝑂𝑂𝑇𝑇(𝐴𝐴_𝑄𝑄𝑘𝑘𝑟𝑟)
𝐶𝐶𝑇𝑇𝑇𝑇/𝑂𝑂𝑂𝑂𝑇𝑇(𝐴𝐴,𝐵𝐵,𝐶𝐶) 

                   (18) 

 

To establish the TL and OSL responses of the dosimeters used as 
a function of the x-ray dose, the reference TLD and OSLD 
dosimeters (A) were exposed to different x-ray doses of 0.24, 0.5, 
1, 1.5, 2 and 4 Gy . The exposure is carried out under suitable 
operation conditions of the X-ray generator in terms of high 
voltage (kV), anode current (mA) and exposure time (s).  

The determined ECFs are presented in the following table for the 
different TLDs and OSLDs following the measurements of the TL 
and OSL signals for the same dose of 2 Gy. 

 

Table 4. Elementary Correction Factors 

 Dosimeter ECF 

T

L

D 

A (reference) 1 

B 1.30 

C 0.98 
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O

S 

L 

A (reference) 1 

B 1.07 

C 1.01 

 

The TL signals obtained (Fig.5) for the reference TL dosimeter (A) 
enabled us to determine the TL intensities for the different doses 
considered and to establish the response curve (TL = f (D) (Fig.6). 
The linear data adjustment by the least squares method allow 
generating the Fit equation (Eq.19) that is used for the 
determination of the doses during the CT-scan examination. The 
response curve seems well linear with a regression factor of 0.99. 

Likewise, the OSL signals obtained (Fig. 7) for the reference OSL 
dosimeter (A) are also used to establish the response curve (OSL 
= f (D) (Fig.8). The linear data adjustment tallow too the objection 
of the relation between dose to OSL intensity (Eq. 20).  

 

 

Fig. 5 TL signals obtained for the reference TLD (A) 

 

 

Fig. 6 TL-Dose response curve of the reference TLD (A) 

𝐶𝐶𝑇𝑇𝐿𝐿 = 780839 ± 20854 × 𝐶𝐶 + 46923 ± 11797    (19) 

 

 

Fig. 7 OSL signals obtained for the reference TLD (A) 

 

 

Fig. 8 TL-Dose response curve of the reference OSL (A) 

𝐶𝐶𝐵𝐵𝑂𝑂𝐿𝐿 = 58012 ± 343 × 𝐶𝐶 − 997 ± 174        (20) 

RESULTS AND DISCUSSION 
CT-scan and dose determination by CARE dose-4D 

In the CT-scan performed, the slice thickness is 1mm. Thus, and 
depending on the lengths of the scanning topograms, 241 slices 
were acquired for TL dosimetry and 219 for OSL dosimetry. For 
TL dosimetry, slices N ° 100, 101 and 102 cover the axial positions 
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of the used dosimeters (A, B and C) on the phantom (Fig. 9). 
Likewise, for OSL dosimetry, slices N ° 92, 93 and 94 cover the 
axial positions of the used OSL dosimeters (A, B and C) on the 
phantom (Fig.10). The CT-slices obtained are of very good quality 
from a visual point of view (contrast and definition).  

 

 
Fig. 9 CT slices 100, 101 and 102 for TL dosimetry 

 

 
Fig. 10 CT slices 92, 93 and 94 for OSL dosimetry 

 

The values of CTDIvol and DLP calculated by CARE Dose-4D are 
presented in table 5. From these values, the effective doses E (DLP 
× k) are determined for both TL and OSL dosimetry (Table 5). 

 

Table 5. CTDIvol and DLP calculated by CARE Dose-4D and 
corresponding effective doses E  

CTDIvol  

(mGy) 

CTDIW 

 (mGy) 

DLP 

(mGy. cm) 

E = k×DLP 

(mSv) 

TL dosimetry 

46.43 46.43 1188.6 2.5 

OSL Dosimetry  

39.85 39.85 896.6 1.88 

 

Measured effective doses by TL and OSL dosimetry 

Following the exposure of the Rando Phantom, the point-doses in 
A, B and C positions are measured and corrected. The measured 
and corrected TL and OSL intensities are presented in table 6. 

 

 

 

Table 6. Measured and corrected TL and OSL Intensities  

TLD/OSL 
Measured 

Intensity 
ECF 

Corrected 

Intensity 

TL dosimetry 

A 74596±3730 1 74596±3730 

B 66057±3302 1.30 85874±4292 

C 80846±4042 0.98 79229±3961 

OSL Dosimetry  

A 5997±280 1 5997±280 

B 4471±224 1.07 4783.97±240 

C 3860±185 1.01 3898.6±187 

 

The point-doses at positions A, B and C are determined by the 
TL/OSL-Dose response equations and corrected by the various 
corrections factors (Table 7). From the doses measured by TL and 
OSL dosimetry, the effective doses are determined by the CTDI 
method according to the formalization already presented. Table 7 
summarizes the values of the average absorbed point-doses with 
the used correction factors.. 

 

Table 7. Measured and corrected doses  

 
Measured dose 𝐶𝐶𝐶𝐶1/3 𝐶𝐶𝐶𝐶2/4 

Corrected 

dose 

 TL dosimetry 

A 35.44± 1.8 0.486 1.16 19.97 ± 1.53 

B 49 88 ± 2.31 0.486 1.16 28.12 ± 2.19 

C 41.37 ±3.52 0.486 1.16 23.33 ±1.62 

 OSL Dosimetry  

A 120.56 ± 5.23 0.192 1.17 27.08 ± 3.31 

B 99.65 ± 4.51 0.192 1.17 22.38 ± 3.05 

C 84.38 ± 4.06 0.192 1.17 18.95 ± 2.88 

 

From the point-doses measured by TL and OSL dosimetry, the 
effective doses are determined by the CTDI method according to 
the formalization already presented. Table 8 summarizes the 
values of determined effective doses for each dosimetry (TL and 
OSL). 
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Table 8. Measured effective doses by TL and OSL dosimetry, and 
CTDI method  

CTDIw 

(mGy) 

CTDIvol 

(mGy) 

DLP 

(mGy.cm) 

E 

(mSv) 

TL dosimetry 

23.8 ±1.7 43.3 ± 1.8 1107.7±55.7 2.33 ± 0.09 

OSL Dosimetry 

22.8 ± 1.1 41.45±1.3 932.6 ± 51.1 1.96 ± 0.08 

 

Comparison between TL&OSL dosimetry and CARE 
dose-4D  

The results of tables 5 and 8 allow us to make the following 
remarks and conclusions: 

1. The differences between the doses estimated by CARE 
Dose-4D and the CTDI method associated with TL and OSL 
dosimetry are 6.8% for TL and 4.08% for OSL. This shows that, 
on the one hand, CARE Dose-4D estimates and optimizes well the 
dose in CT-scan well. On the other hand, the two used dosimetries 
are very efficient for dose measurement with a slight advantage for 
OSL dosimetry. 

2. The doses of the two CT-scans carried out for the TL and 
OSL dosimetries, whether estimated by CARE Dose-4D and 
determined by the CTDI and TL and OSL dosimetry, are different 
because of the lengths of topograms were not the same (25.6 and 
22.5 cm) and therefore the doses absorbed by the two different 
volumes should be different. Indeed, we notice that the ratio 
between the two topogram lengths is 1.13, and that between the 
CARE Dose-4D doses is 1.32, while that between the CTDI-
dosimetry-TL/OSL doses is 1.18. This shows that TL-OSL 
dosimetry tracks the change in dose deposition volume better than 
CARE Dose-4D.  

Comparison to others studies 

The effective dose calculated and measured for a the head CT-scan 
with a standard scanning protocol around the Siemens Somatom 
128 scanner were also compared to other results internationally 
obtained for the same CT-scan. Table 9 compares CTDIvol, DLP 
and effective doses from various origins. 

 

Table 9. Comparison of effective doses E for the head CT-scan from 
various origins  

Origin L DLP 

(mGy.cm) 

E 

(mSv) 

Our Study 

CARE Dose–TL 25.6 1188,6 2,5 

CARE Dose–OSL 22.5 896,6 1,88 

CTDI-TL 25.6 1107.71 2,33 

CTDI-OSL  22.5 932,63 1,95 

Worldwide results 

South Africa13 25 989,92 2,07 

Nigeria14  21.5 1310 2,75 

Canada15  13.2 1098 2,31 

Kenya16 26.4 1612 3,38 

Egypt17 45.3 1360 2,85 

Greece18 15.8 1053 2,21 

United States19 18.1 1120 2,35 

Australia20 16.7 1000 2,1 

France21 16.2 1050 2,21 

 

Although, the CTDIvol compared are representative in terms of 
absorbed dose level, the comparison of effective doses is not 
objective unless one proceeds to standardize and normalize the 
dose against the length of the topogram used in the CT-scan. The 
following figure 11 shows graphical comparison of standardized 
and normalized effective doses with respect to the topogram length. 
The results of the comparison clearly show that the dose is very 
well optimized in the scanning protocol of the Egyptian reference. 
The worst optimization is that relating to the Canadian reference. 
Our Siemens Somatom-128 scanner optimizes the dose relatively 
better compared to other scanners as shown in figure 11 by 
ensuring a very good image quality as shown on the CT-slices 
obtained. However, the objective comparison between these doses 
remains depending on quality of the produced CT images and the 
dose level to be not exceeded for this kind of CT-scan. If such CT-
scan is combined with radiotherapy treatment, the determined 
dose levels should be taken into consideration in the total dose to 
be administered to the patient to avoid overdose problems 
although for low doses. 

 
Fig. 11 Comparison of standardized and normalized effective doses 
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CONCLUSIONS 
In this project, it was a question of applying TL and OSL 
dosimetry after calibration of the dosimeters for the 
measurement of the point-doses necessary for the application of 
the CTDI method for the determination of the effective dose in 
CT-scan. 

In this work, effective dose is measured for a specific head CT-
scan around a Siemens Samaton 128 radiotherapy simulation 
scanner. This protocol was specially chosen because it is the one 
that poses the most dose toxicity problems for patients to be 
treated with radiotherapy. TL and OSL dosimetries were 
performed under clinical CT-scan conditions. All dosimetric 
response functions of the used dosimeters were effectively 
established and found to be linear. 

The differences between the doses estimated by CARE Dose-4D 
and the CTDI method with TL and OSL dosimetry are 6.8% for 
TL and 4.08% for OSL. This shows that CARE Dose-4D 
correctly estimates and optimizes the dose of the CT-scan. It was 
also observed that TL and OSL dosimetries follow the change in 
absorbed dose as a function of deposition volume better than 
CARE Dose-4D. 

This study show that for an objective comparison between 
effective absorbed doses, the CT image quality and the dose level 
not to be exceeded must be taken into consideration. If CT-scan 
is associated with radiotherapy treatment, the determined dose 
levels in CT-scan should be taken into account in the total dose 
to be administered to the patient to avoid problems of overdose 
and radiotoxicity. 
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ABSTRACT: The simulation in nuclear medicine is an effective approach to test new mathematical methods of image 
processing and lesion detection. These methods are used to extract information inaccessible by conventional PET-image analysis. 
Dynamic 18FDG-PET is a powerful tool for the examination of malignant tumors. The aim of this work was to simulate dynamic 
18FDG-PET images for a better detectability of lesion. In this work the three-compartment model with four kinetic parameters 
and blood volume component (k1, k2, k3, k4 and Vp) was, firstly, used to simulate the time-activity curves (TAC’s) of 18FDG. 
The arterial input function of 18FDG was, then, modeled using a parametric function. In total, the TAC’s of thirteen tissues were 
simulated, namely: lung, stomach, spleen, pancreas, marrow, gray and white matter, skeletal muscle, liver, kidney and tumors. 
Secondly, a typical 18FDG dynamic PET protocol has been adopted to generate 28 time frames [9 x 10 s, 3 x 30 s, 4 x 60 s, 4 x 
120 s, 8 x 300 s]. To generate dynamic phantom, the activity values were calculated from the TAC’s according to the scan duration 
of each frame. These activity values were assigned to each voxel of the realistic XCAT human torso phantom in order to produce 
28 activity maps. Finally, the STIR platform was used to reconstruct and to generate the 18FDG PET images from the XCAT 
phantom. Results: the arterial input function was calculated and used in the simulation of the TAC’s of each tissue. Then, the 
TAC’s were generated using the three-compartment model. The consistency of our results was assessed through the comparison 
between the calculated TAC’s and those reported in literature that showed good agreement. Finally, a total number of 28 frames 
of XCAT phantom were generated. Realistic dynamic 18FDG-PET images were simulated using kinetic modeling and XCAT 
phantom. The obtained findings can be used to study the impact of the reconstruction parameters on the detectability of lesions 
in the 18FDG PET images. 
Keywords: Simulated dynamic; 18FDG-PET images; 4D-XCAT phantom; STIR; 18FDG kinetic modeling. 

 
 
INTRODUCTION 
 

Positron Emission Tomography with 2-deoxy-2-[18F] fluoro-D-

glucose (18FDG-PET) play important role in detection and 

treatment of malignant tumours. The dynamic 18FDG-PET 

acquisition is often used with a kinetic modelling to estimate the 

physiological parameters that characterise the functional state of 

tissue. It is also used in lesion detection 1, since the difference of 

tracer uptake of normal and malignant tissues taken over the time 

can provide additional feature to improve the lesion detectability. 

In this type of acquisition, the use of short time frame to capture 

the peak of activity concentration leads to a noisy 18FDG-PET 

images. In these images, the lesion detection task becomes a 

tough work, and several researchers work on developing new 

 

2021 
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methods to improve the lesion detectability in the 18FDG-PET 

images. The most drawback of using the clinical images in image 

processing process is to obtain a sufficient set of clinical images 

with known truth about the presence or absence of lesions. To 

overcome this drawback, the simulation approach is highly 

needed. It is considered as a substantial way for the researchers 

to provide images for developing and testing new mathematical 

methods for image processing and lesion detection. The 

simulated images can be highly clinically realistic if a validate 

PET imaging system combined with a realistic model of human 

body and an actual 18FDG activity distribution is used 2.  

This work aims to simulate dynamic 18FDG-PET images to 

study the impact of the reconstructed parameters on lesion 

detection. To do so, we have used the well-known 4D eXtended 

CArdiac‐Torso (4D-XCAT) phantom and 18FDG kinetic 

modelling. The Time Activity Curves (TAC’s) of different 

tissues of 4D-XCAT phantom are calculated using three-

compartments model and simulated input function. For the 

reconstruction procedure, Software for Tomographic Image 

Reconstruction (STIR) software is employed. 

MATERIALS AND METHODS  
Numerical phantom 

We have used the realistic 4D-XCAT human torso phantom to 

model the time-dependent activity and the 511-keV attenuation 

maps for the tissues listed in table 1 3,4. To model the lesion, a 

lesion size of 9 mm diameter was simulated and inserted at the 

top of the liver in the main phantom 4D-XACT. The attenuation 

maps generated were used for the attenuation correction in the 

image reconstruction procedure. The activity maps were 

generated by calculating the TAC’s of different tissues of 4D-

XCAT phantom. The TAC’s were calculated using an actual 

18FDG kinetic micro-parameters, an effective blood plasma 

volume values cited in table 1 5, 6 and a modeled input function. 

To produce a series of dynamics activity maps, a real acquisition 

protocol were adopted in this study. This protocol consists of 28 

frames recorded during 55 min: 9*10s, 3*30s, 4*60s, 4*120s 

and 8*300s 7. The activities values calculated, according to each 

time frame, were assigned to the voxels of each region of the 4D-

XCAT phantom to produce 28 frames. The image matrix size of 

the activity maps and the attenuation map was 256 × 256 pixels, 

with a pixel size of 2.5 x 2.5 mm2.   

Modelization of the 18FDG Time Activity Curves 

To generate the TAC's of 18FDG, we have used the standard 

three-compartment model 8. A descriptive schema of this model 

is illustrated in fig. 1.  

 
Fig. 1 A schema showing the three-compartment model of 18FDG 

uptake 

 

In this model, Cp(t)  is the input function, Ce(t)  and Cm(t) 

are the concentrations of unmetabolized, metabolized and 

trapped 18FDG in tumor cells, respectively, expressed in kBq/mL.  

k1⟶4  are parameters describing the exchanges between the 

compartments.  

 k1  ( min−1 ) and k2  ( min−1 ) represent the reversible 

exchanges of FGD between the blood and tissue 

compartments; 

 k3  (min−1 ) represents the phosphorylation of the FDG 
18FDG-6-PO4 ; 

 k4  ( min−1 ) represents the effect of possible 

dephosphorylation of FDG-6-PO4 to 18FDG. 

The values of these parameters, as reported in the literature, are 

presented in the Table 1. 

The 18FDG kinetics is described by the following differential 

equations: 

𝒅𝒅Ce(t)
𝒅𝒅𝒅𝒅

=  k1 Cp(t)-( k2 + k3) Ce(t)+ k4 Cm(t)  (1) 

𝒅𝒅Cm(t)
𝒅𝒅𝒅𝒅

=  k3 Ce(t)- k4 Cm(t)     (2) 

CFDG(t) = Ce(t) + Cm(t) + VpCp(t)    (3) 

 

CFDG(t) being the total concentration of the 18FDG in an Region 
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Of Interest  (ROI), and Vp  represents the effective blood 

plasma volume contained in the ROI. 

The solution of this system of equation gives: 

 

CFDG =  Ki  ∫Cp(t)dt + VpCp(t),   (4) 

with: Ki = k1∗k3
k2+k3

       (5) 

 

Table 1. The 18FDG kinetic micro-parameters and the effective 

blood plasma volume 𝐕𝐕𝐩𝐩of different organs used in this study. 

organs k1 (min-1) k2 

(min-1) 

k3 

(min-1) 

k4 

(min-1) 

Vp 

kidney 0.2630 0.2990 0.0000 0.0000 0.4380 

spleen 1.2070 1.9090 0.0080 0.0140 0.0000 

liver 1.2560 1.3290 0.0020 0.0020 0.1650 

marrow 0.4250 1.0550 0.0230 0.0130 0.0400 

myocardium 0.1960 1.0220 0.1490 0.0100 0.5450 

lung 0.1080 0.7350 0.0160 0.0130 0.0170 

aorta 0.0000 0.0000 0.0000 0.0000 1.0000 

soft tissue 0.0470 0.3250 0.0840 0.0000 0.0190 

ventricle 0.0000 0.0000 0.0000 0.0000 1.0000 

stomach 0.6140 1.8850 0.0710 0.0310 0.0630 

tumour 0.1860 0.4380 0.3360 0.0000 0.0800 

 

In order to generate the 18FDG TAC’s, we have modeled the 

input function Cp(t) using the parametric function proposed by 

feng 9-12. The mathematical expression of this model is given as 

follows: 

Cp(t) = (A1t − A2 − A3)eλ1t + A2eλ2t + A3eλ3t  (6) 

with: 

 λ1  (min-1), λ2  (min-1) and λ3  (min-1) are the 

eigenvalues of the model. 

  A1  (μCi/ml/min),  A2  (μCi/ml) and  A3 (μCi/ml) are 

the coefficients of the model. 

The values of the λ1⟶3 and A1⟶3 are repoted in Table 2. 

  

Table 2. Parameters of the Input function used in this study. 

A1 

(μCi/ml/min) 

A2 

(μCi/ml) 

A3 

(μCi/ml) 

λ1 

(min-1) 

λ2 

(min-1) 

λ3 

(min-1) 

851.1225 21.8798 20.8113 -4.1339 -0.1191 -0.0104 

 

Scanner geometry and image reconstruction 

For the reconstruction procedure, STIR software version 4.0.0-

alpha has been used 13. Firstly, we have employed STIR ray 

tracing technique to perform the forward projection of the 4D-

XCAT activity maps in order to generate a free-noise sinograms 

using parameters that define the geometry of the scanner General 

Electric (GE) Discovery 710. This scanner contains 25 rings 

with 576 detectors per ring. It has also 6 and 9 crystals per block 

in axial and transaxial directions, respectively. The inner ring 

diameter is 81.02 cm with 0.654 cm distance between the rings. 

The average depth of interaction and the default bin size are 0.94 

and 0.21306 cm, respectively. The effective central bin size was 

set to 0.213 cm. Secondly; The free-noise sinograms generated 

were attenuation corrected by calculating the attenuation 

coefficient from the 4D-XCAT attenuation maps. Then, a noisy 

sinograms were obtained by corrupting the corrected sinograms 

with Poisson noise. Finally, these sinograms were reconstructed 

using Ordered Subsets-Maximum a posteriori Probability-One 

Step late (OSMAPOSL) algorithm with 35 iterations and 1 

subset. The same reconstruction procedure was applied to all the 

28 frames covering the liver region. The reconstructed image 

size was 256 x 256 pixels, with the voxel size of 2.5 x 2.5 mm2.  

RESULTS AND DISCUSSION 
The Input function obtained using equation 6 and the parameters 

values reported in table 2, is given in fig. 2. The pic shown in fig. 

2 is corresponding to the dose injection. Using this input function 

with the 18FDG kinetic micro-parameters reported in table 1 and 

the kinetic modelling equations 1-5, TAC’s of 11 tissues were 

generated and illustrated in fig. 3.  From the TAC of the tumour, 

we can see clearly the trapping of the 18FDG. This is due to the 

high value of k3  and k4 = 0, as can be seen in table 1. We can 

see also that the TAC of the ventricles and the aorta are identical 

and similar to the Input function since all the kinetic micro-

parameters of these organs equal zero and the effective blood 

plasma volume equal to one. The TAC’s simulated were used to 

generate the 18FDG dynamic activity maps.  
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Fig. 2 18FDG Input function used in this study. 

 

 
Fig. 3 TAC's of 18FDG generated for different tissues of 4D-XCAT 

phantom. 

Representative transverse, coronal and sagittal slices selected 

from early, intermediate and late time frames of dynamic 18FDG 

activity map corresponding to frame 1, frame 17 and frame 28 

are given in fig. 4. From the early frame, one can observe that 

the activity is high in the ventricles and the aorta among the other 

organs. For the lesion detection, as we know the detection is 

occurred when the activity of the lesion is higher or lower than 

the surrounding tissue. So, we can see the lesion inserted in the 

liver as a cold spot since the activity of this later was greater than 

the activity of the former.  In the intermediate frame, we cannot 

easily differentiate the lesion from the liver because the activity 

in the tumor and in the liver is almost similar. In the late frame, 

we can see clearly the lesion with a high activity. This is due to 

the irreversible trapping in the lesion and the increased activity 

concentration in the late frame.  

All the 28 frames generated were forward projected and 

reconstructed following the procedure described in paragraph 

II.c.  An example of projection data of frame 28 is shown in fig. 

5. The reconstructed images from an early, intermediate and late 

frame time correspond to those illustrated in the fig. 4 are 

displayed in figure 6. The images reconstructed are qualitatively 

identical to the simulated ones, demonstrating the reliably of the 

reconstruction procedure followed. However, the lesion that we 

have hardly observed in the frame 17 since the lesion and liver 

activity values were close, can be not seen in the corresponding 

reconstructed image. This is perhaps due to the technical 

limitations of the scanner used in this study.   

 

 
Fig. 4  Transverse (a), coronal (b) and sagittal (c) simulated images 

of 18FDG activity maps taken at 3 different time points 
corresponding to : i = frame 1, ii = frame 17 and iii = frame 28 

 

 
Fig. 5 Sinogram after forward projecting the activity maps of frame 

28 
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Fig. 6  Transverse (a), coronal (b) and sagittal (c) reconstructed 

simulated TEP images taken at 3 different time points 
corresponding to i = frame 1, ii = frame 17 and iii = frame 28 

CONCLUSIONS 
In this work, the 3-compartment model was used to generate the 
18FDG temporal activity concentration curves. These curves 

were calculated using the parametric model of the arterial input 

function and the physiological parameters of the organs reported 

in the literature. A real data acquisition protocol was adopted to 

create 28 frames. The activity concentrations of 18FDG in each 

frame were calculated from previously simulated time activity 

curves. The calculated concentrations for each organ were 

injected into the voxels of the 4D-XCAT Digital Phantom. The 

created phantom was reconstructed to generate dynamic PET 

images using the STIR software.  

In perspective, the obtained findings can be used to study the 

impact of the reconstruction parameters on the detectability of 

lesions in the 18FDG PET images. 
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ABSTRACT: In brachytherapy, the accuracy of the commissioning is very important for the prescription of treatment for 
the patients. The aim of this study is to perform a commissioning for a treatment planning system (TPS) and check its accuracy 
in order to ensure a good treatment of the patients. In this study, sources of Cesium-137 CIS BIO international CSM11 type were 
used for the commissioning of Elekta XiO brachytherapy TPS. The necessary irradiations were performed by the BEBIG Eckert 
& Ziegler Curietron machine. EBT3 Gafchromics films were used for the dose measurement after their calibration around the 
Elekta Synergy linear accelerator. Necessary data for the TPS were first collected and, then, used to extract the dose distribution 
for each source. The dose distributions were also measured by Gafchromic films. The measured and calculated dose distributions 
were compared. For each source, the majority of dose distribution points are conform to the passing criteria of gamma index. The 
studied TPS was commissioned for clinical use in brachytherapy treatment planning with the considered sources.   
Keywords: Brachytherapy; TG43; Gamma index; Commissioning. 
 

INTRODUCTION 
A commissioning of a treatment planning system (TPS) 

passes by three stages. First step is the acquisition of the data of 

the machine (or source for brachytherapy). It consists in 

collecting the data of the radioactive sources such as geometry, 

activity, reference air kerma rate (RAKR)…etc. Then, modelling 

the source by accomplishing a model for the source so that the 

algorithm can generate a dose distribution by using the data 

already introduced. Finally, check of the accuracy of the 

calculation by checking the dose distribution by comparing 

calculated dose distribution with TPS and that measured with a 

detector. The aim of this study is to perform a commissioning for 

the sources of cesium137 and checking the accuracy of the 

algorithm to ensure a good planning for the patients. 

 
EXPERIMENTAL 
We have use Elekta Xio 4.8 brachytherapy TPS to achieve the 
commissioning of Cesium 137 type CSM11 radioactive sources 
(CIS Bio International, Saclay, France). XiO supports two 
methods TG43 formalism and Sievert Integral. We have chosen 
the TG43 formalism due to its accuracy.  
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Fig.1 E&Z BEBIG Low Dose Rate cesium 137 type CSM11 

 

    Ḋ(r, θ) = SK .  Λ  .  GL(r,θ)
GL(r0,θ0)

  .  gL(r) .  F(r,θ) 
(1) 

 
Fig.2 Brachytherapy dose calculation geometry 

 

We have used as a machine of treatment the Curietron (BEBIG 

Eckert & Ziegler Company). In this work, five (5) “Curiestock” 

linear sources of Cesium-137 with different lengths have been 

considered. Each linear source is composed of two or several sub 

sources of Cesium 137 of type CSM11 according to its length. 

Necessary data for the source of Cesium-137 CSM11type was 

taken from the report of the AAPM and ESTRO1. 

To validate the model of the radioactive source that was created, 

we must perform some checking task by comparing distribution 

of dose calculated by TPS to measured one by the detector. We 

have chosen Gafchromic (Ashland Specialty Ingredients, 

Bridgewater, NJ, USA) EBT3 radiochromic films as a detector 

because of its high space resolution to measure the dose 

distribution of the linear sources considered. 

To obtain the distribution of dose calculated by the TPS for the 

different radioactive sources, we have used a phantom composed 

of six plates of PMMA (PolyMethylMethAcrylate) with 1 cm in 

thickness to avoid any backscatter. We have put an applicator of 

“Dellouche” type on the top of the sixth plate. Figure 3 shows the 

disposition of the applicator on the phantom. 

 

Fig.3 Applicator and Gafchromic film disposition on phantom 

 

CT-images acquisition for the applicator on the phantom with a 

Big Bore Brilliance CT were succefully accomplished by 

PHILIPS scanner. With these CT images, we planned with TPS 

for the five different linear sources considered (five different 

lengths) a treatment of ten hours. Finally, the calculated dose 

distribution for each radioactive source was extracted. 

To validate the model of the radioactive source which was created, 

we make a check by comparing calculated dose distribution by 

TPS and that measured by films.  

For the comparison of the dose distribution of the different linear 

sources, we have used the PTW-VERISOFT 6.0 software 

package. The comparison is based on the gamma index criteria 

by using the dose difference (DD) in % and the distance-to-

agreement (DTA) parameters in mm. 

 

RESULTS AND DISCUSSION 
Figure 4 shows both measured and calculated dose distribution 

for a 40 mm length linear radioactive source normalized at 5 Gy. 

The 2D gamma index distribution for this linear radioactive 

source for 2% of dose difference to the maximum dose of 

calculated volume and 2 mm of distance-to-agreement is 

illustrated in Figure 5. The comparison results between measured 
and calculated dose distribution with different criterion of 

gamma index for the five different linear radioactive sources are 

presented in Table 1. The calculated dose distribution by the TPS 

is validated with more than 95% of checked points for a 

difference to the maximum dose of the calculated volume of 3% 

and a distance-to-agreement of 5mm. 
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Table 1. Comparison results between measured and calculated dose distribution with different criterion of gamma index 

Source ID 

Active 

length 

[mm] 

2%,2mm 2%,3mm 3%,2mm 3%,3mm 3%,5mm 5%,3mm 5%,5mm 

51814 17 59.2 86.5 65.4 89.7 98.7 92.3 98.7 

51813 40 100 100 100 100 100 100 100 

51811 50 79.6 94.2 82.2 94.4 100 95.2 100 

51818 60 49.9 63.6 53.2 66.4 97.5 74.2 97.5 

51820 70 73.7 87.5 75.2 88.2 99 90.3 99 

 
 

 
Fig.4 Measured dose distribution (A) and calculated dose (B) 

distribution for the radioactive source 51813/40mm normalized at 5 
Gy 

 
 

 
Fig. 5 2D gamma index distribution for the radioactive source 
51813/40mm for 2% of dose difference with maximum dose of 

calculated volume and 2mm distance to agreement 

CONCLUSIONS 
On the basis of the of gamma index 2D criterion, results of the 

actual study show clearly that the calculated dose distributions by 

the considered TPS is validated with more than 95% of checked 

points for a DD of 3% and a DTA of 5 mm taken as passing 

criteria. Therefore, the Elekta XiO planning system can be safely 

used to plan brachytherapy treatment with the models of the 

linear radioactive sources considered. 
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ABSTRACT: Neutron tomography is a developed technique for non-destruction examination. It is widely used in 
industrial fields for the determination of internal structures of objects. This examination is, generally, based on the exploitation 
of neutron transmission data. In our work, a three-dimensional model was reconstructed using the neutron transmission data 
obtained by Monte Carlo simulation on a virtual object. 2D images are reconstructed using the Filtered Back Projection (FBP) 
method using MatLab software. Projection data simulated from different angles were considered and Shepp-Logan filter was 
used for the tomographic reconstruction. The reconstructed image obtained has a configuration similar to that modelled 
geometrically. When optimal number of projections is used, the gray levels areas become uniform allowing high quality 
reconstructed image with less artifacts. 
Keywords: Neutron transmission, Monte-Carlo code, Simulation, Modeling, Projection, Reconstruction. 
 

INTRODUCTION 
Neutron tomography has acquired great importance in nuclear 
installations for scientific and industrial applications1-3. It is 
based on the attenuation physical principle of a neutron beam 
passing through a material. 

Neutron attenuation can be measured or simulated using 
appropriate codes. In the neutron imaging this parameter can be 
used for the neutron characterization of shielding materials 
entering sensitive structures such as nuclear reactors or neutron 
sources. Also, the neutron attenuation can be used for the 
projection data determination in a large number of pixels of a 
detector plane as in the transmission neutron tomography4-5. 

Monte Carlo simulation of the radiation transport within a 
system, using appropriate computer codes, provides a better 
understanding and interpretation of the neutron transmission 

process3. These calculation codes can give particle counts 
exactly analogous to experimental measurements4-6. 

It can collect the particle transmitted through studied materials 
on a rectangular plane image grid, which was used in our 
simulation work. This option makes synthetic radiography 
applications possible with Monte-Carlo simulation code7-8. 

In this work, we try to generate tomographic projections for a 
high speed bearing 6202z made of stainless steel materials by 
using a Monte-Carlo simulation code. This bearing is 
containing a spherical foreign body as a result of corrosion 
made of ferric oxide. The results will be used for the 
reconstruction of tomographic image representing the internal 
structure. 

Using the appropriate codes, the neutron attenuation (parameter 
related to neutron transport in material) can be measured and 
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simulated. This simulation provides a better understanding and 
interpretation of the neutron transmission process. 

SIMULATION 
Studied phantom description 

In this work, we have proposed to study a single row deep 
groove ball bearing 6202z (15x35x11) NSK (Fig.1). It is 
having an axis of symmetry. It is composed principally of two 
ring incorporated one in the other. Distributed between the two 
rings, ten balls made of iron of diameter 0.6 cm. The inner ring 
and the second one are composed of iron and having diameters 
of 1.5 cm and 3.264 cm, and thickness of 0.15 cm and 0.118 
cm, respectively. 

In this phantom, we assume the formation of a foreign body as 
a result of the corrosion phenomena. This body is composed, 
for example, of ferric oxide with a spherical shape of diameter 
0.4 cm staked on the internal side of the outer ring. 

 
Fig. 1 Single row deep groove ball bearing 

 

Geometric modeling by Monte-Carlo code 

The geometric modeling and the complete description of the 
object are represented in the input file:  The shape, size and 
materials of each part are well defined. The studied-materials 
compositions; Iron (Fe) and Ferric Oxide (Fe2O3), are defined 
in 'Material card' of the Monte-Carlo code where their mass 
densities are 7.86 and 5.2 g/cm3, respectively. In order to model  

 

the proposed configuration, cylinder and sphere geometries 
were used.  

In Fig. 2, we have represented 3D visualization and the three 
slices (XY, XZ and YZ) of the configuration studied by 
Monte-Carlo simulation code. 

Neutron transmission data simulation 

The emerging beam intensity (I) is normalized with respect to 
the beam intensity measured without sample (I0) for obtaining 
the neutron transmission data by simulation using the following 
equation:  

 

Tr = − I
I0

                      (1) 

The results obtained by Monte-Carlo code are used to create a 
50x100 matrix in the Excel software.  

The neutron transmission data was simulated by running the 
Monte-Carlo code for a number of neutron histories. Using this 
code, the distribution of relative uncertainty on neutron flux in 
a Sample Radiograph was illustrated in the output file. The 
results obtained are acceptable only if the relative uncertainty is 
less than 5%. For that, several tests have been executed for the 
maximum number of neutron histories selection. The obtained 
values can be used for the projection data determination in a 
large number of pixels of a detector plane. 

Projection data generation 

The projections are radiographic images taken at several 
projection angles varying from 0 to 180° with a fixed step 
according to the projection number9. They are presented as 2D 
gray level images (digitized in several pixels lines) with a 
variation in blackening proportional to the neutron intensities 
distribution in the neutron beam transmitted from the object 
after interaction. The projection data is calculated using the 
Beer-Lambert equation10: 

P = − ln � I
I0
� = Σtotd = ΣFe dFe + ΣFe2O3d       (2) 

where Σtot and d are the macroscopic cross-section and 
thickness of the studied material, respectively. The macroscopic 
cross-section values of Iron and Ferric Oxide were presented in 
table 1 where the deference between the two attenuations is 
clearly. 

Table 1. Studied Samples 

N° Component Materials Macroscopic cross section (cm-1) Density 

(at/cm3) Absorption Scattering Total 

1 Single row deep groove 

ball bearing 

Iron (Fe) 0.216 0.925 1.141 7.86 

2 Defect (foreign body) Ferric Oxide (Fe2O3) 0.100 0.649 0.749 5.2 
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Fig. 2 Monte-Carlo configuration geometries of studied phantom (a) 3D visualization, (b) slice XY, (c) XZ and (d) YZ. 

RESULTS AND DISCUSSION 
Neutron transmission data simulation 

In the Fig. 3 we show the relative uncertainty variation as a 
function of pixel fraction. It can be seen that the statistical 
uncertainties on the neutron fluxes decrease with the increase in 
the number of neutrons histories up to 5E4 histories (Table 2). 
Beyond this value we notice the divergence of relative 
uncertainty. After that we conclude as the 5E4 histories is the 
adequate value at witch we have collected several projections. 

On the other hand, the transmitted neutron profile through the 
phantom with oxide obtained at 0° for different lines is 
presented in Fig. 4. The comparison between the transmitted 
neutron profiles (I/I0) through the phantom with and without 
oxide for 0° angle at center line was illustrated in Fig. 5 where a 
small deference in the transmission is shown. 

Projection data generation 

Using the neutron transmission data obtained by Monte-Carlo  

 

simulation code the projection data was calculated by eq. 2 and  

represented on radiographic images. The projection data should 
be collected on many angles by rotation of the studied sample. 

The Fig. 6 shows a projection data in terms of gray level for 
several projection angles. We note that, the projection data 
present an identic gray level each 36° angle where the material 
attenuation effect of the foreign body is not visible clearly. It is 
may be very weak, but it should appears clearly on the 
reconstructed images.  

Using a reconstruction method, the combined projection data 
result can be transformed into a series of cross-sectional images 
of the sample11. 

Tomographic image reconstruction 

The collected projection data simulated from different angles 
are processed together to obtain a sample tomographic 
reconstruction using the Filtered Back Projection (FBP) method 
under a MatLab program and a Shepp-Logan filter12. For this, 
sinograms indicating the detected cross section lines under 

Outer ring 

Inner ring 

Ball 

Foreign body  

(a) (b) 

(c) (d) 
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different projection angles θ were considered13. This sinograms 
grouping the projection data simulated by Monte-Carlo code for 
the studied phantom have presented in Fig. 7. In this figure 
there are several blackening regions. The appearance of these 
gray level regions reflects well the existence of embedded 
objects made of materials with different attenuation coefficients. 
The lightest region corresponds to the more attenuating neutron 
material. The black bands correspond to the direct beam 
(without object).  

Using a reconstruction method, the combined projection data 
can be transformed into a series of cross-sectional images of the 
sample Fig. 8. When we use more projections, the gray levels 
have  uniform distribution, with a decrease in artifacts and the  

result becomes acceptable. The reconstruction results obtained 
by simulation are illustrated for several slices using 90 
projections where the foreign body position is detected and 
localized clearly Fig. 9. 

The images reconstructed along the height (all sections) of the 
studied object are stacked using the "VGStudio"14 software for 
the 3D image visualization of the object internal structure (Fig. 
10). We clearly observe: the two rings incorporated one in the 
other, the ten balls and a foreign body composing the studied 
phantom from which the distinction becomes easy. 

 

Table 2. Relative uncertainty variation as a function of number of neutron histories 

Number of neutron histories 
Statistical uncertainties (%) 

< 5% < 10% 

1E3 66.13 95.71 

5E3 97.68 100.00 

1E4 98.06 100.00 

5E4 98.16 100.00 

1E5 84.00 98.39 

5E5 85.03 98.52 

1E6 81.29 89.42 

 
Fig 3 Relative uncertainty variation as a function of pixel fraction. 
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Fig 4 Transmitted neutron profile through the phantom with oxide obtained at 0° for different lines. 

 

 

 
Fig 5 Comparison of transmitted neutron profile (I/I0) through the phantom with and without oxide at 0° (centre line). 
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Fig. 6 Projection data of the studied phantom at different angles θ. 

 

 
Fig. 7 Sinogram grouping the projection data simulated by Monte-Carlo code. 

 

Projection 12° Projection 24° Projection 36° Projection 0° 

Projection 84° 

Projection 156° Projection 168° Projection 180° 

Projection 48° Projection 60° Projection 72° 

Projection 96° Projection 108° Projection 120° Projection 132° 

Projection 144° 
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Fig. 8 2D reconstructed image for different number of projection. 

 
Fig. 9 2D reconstructed image at different line for 90 projections. 
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Fig. 10 Stacking results of all reconstructed sections of the studied phantom. 

CONCLUSIONS 
In this study, a high speed bearing 6202z containing a spherical 
foreign body made of ferric oxide was analyzed by 
Monte-Carlo simulation code. The Monte-Carlo code can 
successfully simulate projection data for transmission neutron 
tomography. The simulation code allowed the determination of 
the internal structure and composition of the object based on 
the transmission data collected. This allows the detection and 
localization of materials incorporated into each other due to 
neutron attenuation coefficients.  

The reconstruction tomography processes gives a better quality 
image that reflects correctly the internal structure; the foreign 
body was detected. 
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ABSTRACT: Neutron imaging is a non-destructive testing technique, similar in principle to X-ray imaging. It is based 
on the attenuation of neutrons as they pass through the material. The conventional film-based neutron imaging system 
implemented around Es-Salam research reactor has been renewed and replaced by a scintillator and CCD-camera based system 
allowing 3D imaging1. Even though this newly enhanced system ensures many imaging advantages, the production of digital 
images is suffering from the drawback of noise caused mainly by gamma rays and the recording system itself.  
In order to restore a high-quality image, it is required to remove noise from the raw captured images. In this work, we develop 
an approach to reduce noise in neutron images. We attempt to achieve this by using a pre-trained convolutional neural network 
(DnCNN) model with a Python deep learning based program. Furthermore, a clear neutron image has been modeled by MCNP5. 
Based on the simulation, the efficiency comparison of the classical methods and the pre-trained DnCNN is achieved. In addition, 
we also apply the DnCNN technique to denoise the experimental neutron image. 
Based on quantitative and qualitative analysis, the DnCNN model proved its efficiency in guaranteeing better and more efficient 
neutron image denoising results when compared to traditional tested techniques. 
Keywords: Neutron imaging; Noise processing; Deep learning; Python. 
 

INTRODUCTION 
Neutron radiography expanded in influence in recent years to 
reach several fields such as: engineering, biology, archaeology, 
metallurgy … etc. The benefits rate depends heavily on the 
images' resolution and clarity. However, in reality, neutron 
images are distorted by noise2. The principle sources of noise in 
neutron images arise during image acquisition due to gamma 
rays effect and recording system. To overcome this problem, we 
should use the denoising methods. In recent decades, some 
image denoising methods based on deep learning have 
developed. In this work, we focus on studying the efficiency of 
the pre-trained DnCNN model3 on neutron images that were 
created around the neutronography facility of the Algerian Es-
Salam research reactor. Our study is summarized as follows:   

1. Noising of neutron image modeled by MCNP5 code4 by 
adding Gaussian white noise. 

2. Denoising this image using the classical methods and the pre-
trained Convolutional Neural Network (DnCNN).  

3. Qualitative and Quantitative analysis of the denoised image. 

4. Denoising experimental neutron image through the 
application of a pre-trained DnCNN.   

 

MATERIAL AND METHODS 

In this section, we present the simulation that we developed in 
this study, in which we used five denoising methods. Two 
methods of the spatial filter5 (Mean filter and Median filter), as 
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well as two methods of the frequency filter6 (Gaussian filter and 
Wiener filter), also the method of denoising convolutional neural 
network (DnCNN). 

In addition, we present the experimental neutron image denoised 
by DnCNN method. 

Figure 1 illustrates the architecture of the DnCNN 

 

 

 

Fig. 1 The architecture of the DnCNN network

 

After the function is learned, features about the noise subtract it 
from the noisy image. In this work, a pre-trained model is used. 
The model is trained by 400 noisy images with several noise 
levels of Gaussian white noise where the neural network 
parameter configuration is as follows: 

- The neural network has a total of 17 layers. 

- Conv+ReLu (Rectified Linear Unit): for the first layer, 64 
filters of size 3x3 are used to generate 64 feature maps. 

- Conv+BN+ReLU: for layers 2 to 16, 64 filters of size 3x3x64  

 

 

are used, and batch normalization is added between convolution 
and ReLU. 

- Conv: for the last layer, filters of size 3x3x64 are used to 
reconstruct the output. 

Simulation  

In this part, we run a simulation in order to examine the denoising 
methods we introduced previously. First, we have modeled a clear 
neutron image (Beam purity indicator) using an MCNP5 code 
(Figure 2). 

Table 1 shows the characteristics of this piece. 

 

Table 1. Characteristics of the beam purity indicator 

Materials Chemical 

composition 

The sub-compounds Atomic fractions 

Lead Pb - 1 

Cadmium Cd - 1 

Boron nitride BN  B, N 0.4, 0.6 

Poly-tetra-fluoro-ethylene 

(PTFE)(Jr, 2010) 

 

C2F4 C, F 0.33331, 0.66669 
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Then, we create a noisy image by adding white Gaussian noise to 
this image Next, we restore the denoised image by applying the 
five methods of denoising. Finally, we performed a quantitative 
analysis of the obtained images by calculating the Peak Signal to 
Noise Ratio7 (PSNR) and qualitative analysis (visual aspect) as 
well.  

Figure 3 illustrates the scheme of the simulation. 

Fig. 2 The image of the Beam purity indicator simulated by a neutron 
flux grid. We used the Fmesh4 feature of the MCNP5 code 

 

 

 

Fig. 3 The simulation scheme 

 

Experimental  

In this part, we have used an experimental neutron image. This 
image is taken around the neutronography facility of the Algerian 
Es-Salam research reactor8. 

This system is composed of a neutron source, a neutron 
collimation system, a scintillator screen, an object turntable, a 

mirror, a cooled CCD camera, and computer support (Figure 4). 

After adjusting the appropriate parameters for our neutron imaging 
system (gain and frame rate), we obtained a neutron image of our 
object. Then, we denoised our image by applying the DnCNN 
technique.  
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Fig. 4 Neutron tomography system of the Es-Salam research reactor

 
RESULTS AND DISCUSSION 
The results obtained in the simulation are shown in Figure 5. 

Table 2 and Figure 6 represent the results obtained (PSNR values 
as a function of the noise variance) by four classical methods and 
the DnCNN method on the reference image. 

The comparison between the aforementioned different methods 
shows that the DnCNN method is the best approach in the values 
of the PSNR (Figure 6). The Mean filter and median filter have 
reduced the noise, but these filters generated a blurring effect in 
the image (Figures 5.b and 5.c). 

Figure 5.d shows that the Gaussian filter gives better results than 
the Mean and Median filters. However, the images  are  blurry  

 

because the Gaussian filter also removes the high frequencies 
corresponding to the details of the image. 

The Wiener filter is the best filter in the PSNR values compared 
to the four classical methods. However, the Wiener filter allows 
smoothing and artifacts on neighboring contours (Figure 5.e). 
Remarkably, the DnCNN method gives a less blurry and clearer 
image (Figure 5.f). The results of the experimental work are 
shown in Figure 7, which shows the results of applying the pre-
trained DnCNN method on the experimental neutron image. 
Based on the subjective criterion (visual aspect), we can say that 
the application of the method of convolutional neural networks 
is effective in terms of noise reduction and clarity of the restored 
images. 

 
 

 
Table 2. PSNR results for simulation images denoised by several techniques 

 

 

 

 
 
 
 
 

 
 
 
 
 

𝝈𝝈 Noisy image Mean filter Median filter Gaussian filter Wiener filter DnCNN 

10 28.7508 34.1927 35.2968 36.9275 37.2242 39.1426 

20 22.9457 30.4224 30.1230 31.9767 32.1834 34.6939 

30 19.5252 27.3093 26.8016 28.4494 28.4925 31.1114 

40 17.2911 25.0398 24.4991 25.9932 26.2799 28.4920 

50 15.5972 23.2469 22.5994 23.9737 24.0558 26.3826 
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Fig. 5 Noise reduction results on the image by different denoising methods (Simulation results) 
 
 

a (Noisy image) 

 

b (Mean filter) 

c (Median filter) 

 

d (Gaussian filter) 

 
e (Wiener filter) 

 

 
f (DnCNN) 
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Fig. 6 Representation of the PSNR of the denoised images as a function of the noise variance, by different denoising techniques on the 

simulation images 

 

 
 

Fig. 7 Denoising results on the neutron image by DnCNN methods (Experimental results) 
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CONCLUSIONS 
In this work, five denoising algorithms were evaluated and 
compared by simulation in order to best select those that were 
used in the experimental part. Furthermore, we have obtained the 
conclusion that the use of classical denoising methods has 
several inconveniences such as: generating a blur effect in the 
image due to removing the high frequencies corresponding to the 
details of the image, allowing very large smoothing on 
neighboring contours, and displaying visible artifacts near the 
contours. 

In the experimental part, we used the DnCNN method on an 
experimental neutron image because the simulation results show 
the superiority of the DnCNN method (better PSNR and better 
contour conservation) compared with the traditional methods. 
The evaluation of the denoised experimental neutron image 
quality confirmed the efficiency of DnCNN method. 

The results of the DnCNN method can be improved by creating 
a dataset of neutron images, training the pre-trained DnCNN 
network again, as well as taking into account the compound 
noise. These suggestions hold the potential of future extensive 
research. 
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Neutron beam characterization at the neutron radiography 

facility of a Es-salam research reactor by SCALE 6.1 simulations 
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bNeutron Radiography Department, Nuclear Research Centre of Birine, 17200, Algeria  

 

ABSTRACT: Es-salam nuclear research reactor has several horizontal and vertical experimental channels; one of its 
horizontal channels is equipped by a neutron radiography facility. The design of this facility required the determination of the 
energetic neutron beam spatial distribution.  This can be achieved by simulation, through powerful calculation codes. These 
allow to predict, to understand and to optimize the behavior of such installation. The purpose of this work was the determination 
of the thermal neutron flux at the neutron radiography facility.  The calculation has been done by the means of SCALE 6.1 Monte 
Carlo simulation codes. The simulation results are in good agreement with experimental measurements. The concordance 
between simulation results and experimental values allow a precise characterization of the neutron radiography beam as well as 
a validation of the adopted methods of simulation and variance reduction. 
Keywords: Neutron beam, spatial distribution, simulation, Monte Carlo, MCNP5, SCALE6.1. 

 

 

INTRODUCTION 
Modeling and simulation can be an important element in the 
prediction of nuclear reactor core behavior. The development of 
a simulation model have to be validated. The purpose of 
validation is to provide confidence in the ability of computer 
code to predict, realistically, reactor core parameters. 
Experimental data are the best source of information in the 
validation process.  

In this work, the neutron radiography facility of Es-salam 
research reactor has been modeled by SCALE 6.1 code package1. 
Simulation consist of both criticality and transport calculations. 
A three-dimensional modeling capability within SCALE6.1 has 
been created to model Es-salam research reactor core and its 
experimental channels, by linking the KENO-VI criticality code 
to the MAVRIC transport sequence. KENO-VI has been used for 
criticality calculations and MAVRIC (Monaco with Automated 
Variance Reduction using Importance Calculations) for radiation 

transport calculations.  

Monte Carlo codes use variance reduction (VR) methods to 
reduce calculation times, and uncertainties, but many of these 
involve a great deal of experience on the part of the user. Over 
the past decade, progress has been made developing hybrid 
methods for VR that use discrete ordinates solutions. These 
hybrid approaches have been automated in MAVRIC reducing 
burden on the user. These automated systems use CADIS 
(Consistent Adjoint Driven Importance Sampling) or FW-
CADIS, which forms an importance map and biased source 
distribution from the results of coarse mesh adjoint discrete 
ordinate calculation2,3. 

This paper details the Monte Carlo simulation of the neutron 
imaging facility and the use of VR technique to achieve 
acceptable precision for the Monte Carlo results in reasonable 
time. 
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NEUTRON IMAGING FACILITY AT 
ES-SALAM RESEARCH REACTOR  
The neutron imaging facility is implemented around Es-salam 
reactor at the nuclear research center of Birine. It is mainly 
composed with a neutron collimator, installed inside the 
horizontal channel N° 6 (H6) of the reactor, an imaging detection 
system based on a cooled CCD camera, a turntable for neutron 
tomography and a beam stop (see fig.1). The entire installation 
is surrounded by biological protection made of concrete.  

 

 

 

 

 

 

 
Fig.1 General layout of the neutron imaging facility 

THE SCALE6.1 CODE PACKAGE 
The SCALE6.1 code system was developed for the U.S.NRC to 
satisfy a need for a standardized method of analysis for the 
evaluation of nuclear facilities. In its present form, the system 
has the capability to perform criticality, shielding, radiation 
source term, spent fuel depletion/decay, reactor physics, and 
sensitivity analyses using well established functional modules 
tailored to the SCALE6.1 system. 

The criticality-eigenvalue sequence (CSAS6) uses a 3D 
multigroup MC transport code KENO-VI to provide the 
problem-dependent, cross-section processing followed by the 
calculation of the neutron multiplication factor keff 1. KENO-VI 
has the ability to save the space-energy fission distribution of a 
critical system into a file over the user-specified 3D mesh grid 
and energy structure of the cross section library. This 
methodology was first implemented into SCALE6.0 code 
package to enable modeling of criticality accident alarm systems 
(CAAS)2,3.  The MC shielding sequence MAVRIC is based on 
the Consistent Adjoint Driven Importance Sampling (CADIS) 
methodology3 which is used to create space-energy mesh-based 
VR parameters: the importance map (weight windows) and a 
biased source distribution3,4. The integrated SN code Denovo1 is 

used for a quick estimate of the deterministic adjoint fluxes (xyz 
mesh) which are used by the MAVRIC for the VR preparation. 
The Monaco is a multigroup, fixed-source, 3D MC transport 
code1, which uses these VR parameters to bias MC simulation in 
the last step of the hybrid deterministic stochastic methodology. 
When computing several tallies at once or a mesh tally over a 
large volume of space, an extension of the CADIS method called 
the FW-CADIS can be used to obtain the uniform relative 
uncertainties3.  

METHODOLOGY ADOPTED IN 
SCALE 6.1 
The CAAS capability in SCALE6.1 is a two-step approach using 
KENO-VI and MAVRIC. The first step is the determination of 
the source distribution, typically done with the CSAS6 control 
sequence, which uses the KENO-VI functional module. In the 
second step MAVRIC use this mesh source to perform transport 
calculations. For best results, the critical system geometry was 
modeled with only the closest surrounding materials but in fine 
details while the transport geometry could leave out small details 
but would include large level components of the in-pile part of 
the neutron imaging facility.  
KENO-VI calculations 

Full-sized reactor core has been modeled using the SCALE 
General Geometry Package (SGGP). The KENO-VI criticality 
calculations for Es-salam reactor core use ENDF/B-VII 238 
group library, a total of 250 generations, with 50 skipped 
generations and 10000 source particles per generation. The 
fission distribution was accumulated on a 17x17x20 mesh 
covering a cylinder surrounding the fissionable material.  

MAVRIC calculations 

The MAVRIC transport calculations were performed for the 
experimental channel; first without the collimator for neutron 
radiography facility and second with the collimator. The 
MAVRIC calculations for both models use the same fission 
source distribution from KENO-VI. The CADIS case was used 
with ENDF/B-VII-27n19g library for faster Denovo Sn 
calculations and ENDF/B-VII-200n47g library for Monaco, 
with S8/P3 parameters. For the importance maps/biased source 
a coarse mesh of about 56 cells in 380 cm2 was defined for Sn 
calculations and number of mesh planes including all the core 
model with significant material boundaries. One adjoint source   
was located at the end of the channel. The adjoint source 
spectrum for CADIS was response 9029 (neutron dose). 
MAVRIC was executed for 10 batches with 100000 neutrons per 
batch (106 histories) for the NR facility without collimator 
system, and 10 batches with 900000 neutron per batch      
(9x106 histories) for calculations with collimator system.

 



W. Titouche, 1st International Conference and School on Radiation Imaging (ICSRI-2021), 26-30 September 2021, Setif, Algeria 

110 
 

RESULTS AND DISCUSSION 
The calculated keff, is within the range of the experimental value 
with a deviation of 0.06%. The fission source distribution is 
sketched in figure 2, where one can notice the spatial gradient of 
the fission neutron over the core. 

 

 

Fig.2 Fission source spatial distribution for the reactor mid-plane 
(z=0) 

 

To show the effect of the automated VR in MAVRIC, an analog 
calculation using the KENO-derived mesh source, but without 
importance map and biased source distribution, was run for 
5767.75 minutes (~96h), in case of neutron imaging facility 
without collimator system, while with the CADIS methodology 
(VR) the total Monaco CPU time, for the same flux calculation, 
was 200.0 minutes (~3h).  

The calculated thermal neutron flux in the horizontal channel 
N°6 (H6) with and without collimator system are presented in 
Table 1 and compared with experimental values measured at     
1 MW reactor power. 
 
 

 

Table 1. Comparison results 

                      MAVRIC Thermal neutron flux  Experimental values Errors   

H6 without collimator system  1.01050 E+8  ±0.02469 0.96 E+8 5.26%  

H6 with collimator system 1.45749 E+6  ±0.02650 1.6 E+6 8.91%  

 
 
  
SCALE6.1 create a file, which can be displayed using the 
ChartPlot 2D Interactive Plotter, to visually check the 
convergence behavior of the tally; in this case the neutron flux 
(Fig.3). As we can see there is a stability between the ten batches 
and the flux converge well. 
 
 

 

Fig.3 Batch convergence data for neutron flux 

 

The SCALE6.1 also includes the Java Mesh File Viewer utility 
to view the flux distribution and it’s homogeneity at the analyzed 
object position, which is an important parameter in neutron 

imaging facility. The total neutron fluxes are shown in Figure 4  

 

for several of the neutron energy groups.  

 

 

Fig.4 Energetic neutron flux spatial distribution at the level of the 
analyzed object 

CONCLUSIONS 
Detailed criticality and transport calculations of Es-Salam 
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research reactor with neutron imaging facility were performed 
using KENO-VI and the hybrid deterministic-stochastic 
methodology in MAVRIC sequence of SCALE6.1 code package. 
SCALE6.1 capability to do detailed simulations were proved. 
The automated variance reduction capabilities of MAVRIC 
allow for the full three dimensional analysis of the reactor core 
and the imaging facility in reasonable time limit. The thermal 
neutron flux was obtained with satisfactory MC statistics and 
match the experimental values.  
This qualification scheme means that the simulation tools are 
suitable to improve the neutron radiography facility and to 
updated. 
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Neutron irradiation effects on topological properties of CZ-silicon  

Nadjet Osmania,* 
a Department Neutron Transmutation Doping of Silicon, Nuclear Research Center of Birine , Djelfa 

ABSTRACT: In this work, the change in the structural properties of CZ-silicon (CZ-Si) are studied before and after 
irradiation at three different fast neutron fluence values: 0.74×1018, 1.98 ×1018 and 3.96×1018 n/cm2. The neutron irradiation was 
performed around the Es-Salam research reactor. The induced surface topography characteristics on the studied CZ-Si material 
was observed using Atomic Force Microscope AFM in contact mode. The effect of the isochronal annealing on the topological 
property CZ-Silicon was studied. 3D-AFM technique is used to characterize the surface quality and roughness. The neutron 
irradiation has induced an increase in the surface roughness in case of higher neutron fluence. It was also observed that the 
roughness increases with the increase of the neutron fluence and decreases by increasing of the post-irradiation annealing 
temperature. This phenomenon can be related to the smoothing aspect of the material surface. 
Keywords: Neutron fluence; Silicon; AFM; Roughness 

 

 
INTRODUCTION 
Defects in semiconductors play a crucial role in determining the 

performance of electronic and photonic devices1. Understanding 

the role of defects is crucial to explain several phenomena, from 

diffusion to guttering, or to draw theories on the materials 

behavior, in response to electrical, optical, or mechanical fields. 

Studies of neutron irradiation structural defects and their 

influence on the characteristics of Silicon were investigated and 

several papers were published2-6. The effect of neutron irradiation 

on the some mechanical properties of such materials was also of 

great interest. Indeed, many investigations have been undertaken 

to understand the silicon damage due to neutron irradiation. 

Results on surface’s roughness of silicon, irradiated at different 

fluences at the level of 1018 n/cm2, are described and discussed in 

this paper. The purpose of this research is to examine structural 

defects in neutron irradiated silicon using atomic force 

microscopy, which may illustrate the evolution of defect from  

 

 

atomic to large clusters. In this paper, very interesting 

information was also obtained by using the topography 

techniques for averaged surface roughness analysis. 

EXPERIMENTAL 
In this work, CZ-Silicon samples were irradiated around the Es-

Salam research reactor under neutron fluences of 0.74×1018, 

1.98×1018, and 3.96×1018 n/cm2. Isochronal annealing 

procedures of 60 min at two different temperatures, 550 and 

750 °C, were carried out in a quartz tube furnace under Argon 

atmosphere. The surface topology of the boron doped CZ-Silicon 

was observed using “Pacific Nanotechnology” Atomic Force 

Microscope (AFM) in contact mode. The data obtained are real 

two- and three-dimensional images of the investigated surface. 
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RESULTS AND DISCUSSION 
Neutron irradiation is a powerful mechanism for semiconductor 

doping. In this study, the neutron irradiation has induced increase 

of the surface roughness at higher neutron fluence. Figure 1 

shows clearly the increase of roughness as a function of the 

neutron fluence. Figures 2 and 3 show the 2D (a) and 3D (b) AFM 

surface topology images of CZ-Si before and after irradiation for 

a neutron fluence of 0.74×1018. For this neutron fluence, the 

surface roughness changes from 8.28 to 9.42 nm. It is well known 

that neutron irradiation may induce various types of structural 

changes that can modify the material mechanical properties. 

Annealing at suitable temperature is a very efficient post-

irradiation treatment that may reduce some irradiation effects 

such as change in roughness. Figures 4 and 5 demonstrate well 

the effect of annealing processing at two-selected temperatures 

of 550 and 750°C for the sample irradiated with a neutron fluence 

of 0.74×1018 n/cm2. Indeed, the average roughness decreases with 

the increase of the annealing temperature. The surface roughness 

of silicon wafer is one of the most important issues that degrade 

characteristics of semiconductor devices. The importance of 

spatial roughness frequency as an influential parameter has been 

pointed. In this research, the effect of roughness due to neutron 

irradiation was studied using samples irradiated with different 

fluences and annealed with two-selected temperatures. From the 

obtained results, it was found that that higher temperature 

decreases the surface roughness due to neutron irradiation.   

 

Fig.1 The average roughness of Si as a function of neutron fluence 

 

 

 

 

 
 
 
 
 
 
 
 
 

Fig.2 (a) 2D and (b) 3D AFM surface topology images of CZ-Si before irradiation 
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Fig.3 (a) 2D and (b) 3D AFM surface topology images of CZ-Si after irradiation at 0.74×1018 n/cm2  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 (a) 2D and (b) 3D AFM surface topology images of CZ-Si after irradiation with 0.74×1018 n/cm2and annealing at 550°C  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 (a) 2D and (b) 3D AFM surface topology images CZ-Si after irradiation with 0.74×1018 n/cm2 and annealing at 750°C  
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CONCLUSIONS 
In the present study, we have pointed out the change in 

topological properties on boron doped CZ-Silicon induced by 

fast neutron irradiation with different higher neutron fluences. 

The induced surface defects is proportional to the neutron 

irradiation fluence and induce an increase in average surface 

roughness. The studied material when subjected to a post-

irradiation thermal annealing find its roughness decreasing by 

the increase of the annealing temperature. 
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Behaviour and Pressurized thermal shock    
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ABSTRACT: The present article documents the two main techniques used in Computational Fluid Dynamics (CFD) code 
validation activity carried out at the Nuclear Research Center of Birine as part of the Coordinated Research Project initiated by 
the International Atomic Energy Agency (IAEA), entitled: "Application of Computational Fluid Dynamics (CFD) Codes for 
Nuclear Power Plant Design”. The work consists in modeling phenomena such as: boron dilution and pressurized thermal shock 
(PTS) by simulating the cooling fluid in the downcomer and the lower plenum of KONVOI German PWR reactor type 
represented by ROCOM test facility designed on a reduced scale 1/5 by the German Research Center HZDR. 
The simulation results were evaluated against the experimental data collected from the ROCOM test. Good quantitative and 
qualitative agreement with the experimental data was obtained. 
Keywords: ANSYS-CFX; PTS; Boron Dilution; ROCOM; CRP. 
 

INTRODUCTION 
Recognizing the growing interest in using CFD codes to 
contribute to the technological progress of their verification and 
validation (V & V) for the purpose of using these codes in 
nuclear reactor design studies, at  the  IAEA  it  was  
decided  to  set  up  a  benchmarking exercises to improve 
the degree of maturity as reliable tools in the safety analysis of 
nuclear reactors.   

In this context, the CFD software packages ANSYS CFX1 code 
was used to simulate one of the experiments conducted in order 
to examine coolant mixing in the reactor pressure vessel (RPV) 
of a German-type PWR, and provide data to validate the 
associated numerical models, the Rossendorf  COolant Mixing 
Model (ROCOM) test facility. Indeed, the essential problem 
related to the distribution of coolant properties, is whether an 
Emergency Core Cooling (ECC) injection following a Small 
Break Loss-of-Coolant Accident (SB-LOCA) may lead or not to 

a Pressurized Thermal Shock (PTS) scenario, due to the 
relatively cold injected water being not sufficiently mixed with 
the water already present in the cold legs.  

From the entire set of data, the experiment D10m10 with 10% 
flow rate in one loop and 10% density difference between ECC 
and loop water has been selected for the calculations to be 
performed during this benchmark exercise2-4. The Froude 
number for this test is Fr = 0.85, and may therefore be regarded 
as density dominated  

Objectives: 

A set of ROCOM CFD-test data are used to calculate the 
behaviour of boron free water slugs arriving from the cold legs 
with a low concentration of boron resulting from the 
condensation of the vapor by creating a slug of non-borated 
water which is at the origin of reactivity accidents. The objective 
here is to obtain a reliable core inlet map for boron concentration 
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for a given scenario,  in  order  to  be  able  to  predict  
the  subsequent  neutronic  behaviour  within  the  core 
region. The sodium chloride (Na-Cl) injected as a tracer can 
significantly modify the electrical conductivity of the water 
allowing the use of the conductance method to measure the 
electrical conductivity of the mixed solution within the water.  

In addition, the ANSYS CFX code1 was used to replicate the 
PTS and boron dilution experiments performed in the ROCOM 
test facility for the prediction of tracer distribution profiles by 
solving the transport equation for a pseudo tracer component as 
a user-defined function (UDF). 

ROCOM FACILITY AND TEST 
DESCRIPTION 
The ROCOM test facility2,3 consists of a Perspex model of the 
RPV (Fig. 1) with four inlet and four outlet nozzles. The facility 
is equipped with four fully independent operating loops (Fig. 2), 
each with its own dedicated circulation pump, driven by motors 
with computer-controlled frequency transformers. As a result of 
this set-up, a wide variety of operating regimes can be realized: 
four-loop operation; operation with pumps off; simulated natural 
circulation modes; and flowrate ramps. For the investigation of 
natural circulation modes, the pumps are operated at low speed, 
by means of the frequency-transformer system. 

Geometric similarity between the actual Konvoi reactor and the 
scaled ROCOM facility is maintained from the inlet nozzles to 
the downcomer, and through to the core inlet. The core itself is 
excluded from the similarity principle; rather, a core simulator 
with the same Euler number (pressure drop vs. flow head) as in 
the original reactor is utilized. All the component parts of the 
ROCOM test facility are manufactured from Perspex for 
visualization purposes (Fig. 1).  

 

 
Fig.1 Perspex model of the RPV in ROCOM  

An overview of the ROCOM test facility is given in Fig. 2. The 
model of the Reactor Pressure Vessel (RPV) incorporates, at 1:5 
scale, the geometry of the original PWR with respect to the 
design of the nozzles (diameter, radii of curvature and diffuser 
sections), the characteristic extension of the downcomer cross-
section below the nozzle zone, the perforated drum in the lower 
plenum, as well as the design of the core support plate, with its 
orifices for the passage of the coolant into the core. The flow rate 
in the loops is scaled according to the transit time of the coolant 
through the RPV. That is, the transit time of the coolant in the 
model is identical to that of the reactor when the actual coolant 
flow rate is scaled by 1:5 

 

 
Fig 2 Overview of the ROCOM test facility with its four loops and 

individual frequency-controlled circulation pumps 

 

From these scaling laws, the nominal flow rate in ROCOM is185 
m³/h per loop. The Reynolds numbers are approximately two 
orders of magnitude smaller than in the reactor. As a result of the 
down-scaling in geometry, a factor of 25 applies for the mass 
flow rates, and hence the velocities. The remaining differences 
derive from the operation at room temperature, and at ambient 
pressure. In particular, at room temperature, the viscosity of 
water is approximately a factor of 8 higher than under typical 
reactor conditions. Since coolant mixing is mainly induced by 
turbulent dispersion (i.e. largely independent on the exact fluid 
molecular properties), it is possible to use a tracer substance to 
model differences in both boron concentration4-7 and coolant 
temperature. The coolant in the disturbed loop is marked by 
injecting a sodium chloride (common salt) solution into the main 
coolant flow upstream of the reactor inlet nozzle. 

Instrumentation  

The distribution of the tracer in the water flow field was 
measured using electrode mesh sensors, which sample the 
distribution of electrical conductivity over the cross section of 
the flow. The development of these sensors was aimed at 
producing a direct conductivity measurement between pairs of 
crossing wires to avoid the use of tomographic reconstruction 
algorithms8, and to achieve a time resolution of up to 10 000 
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frames per second. By this technique, two crossing grids of 
electrodes (insulated from each other) are placed across the 
cross-section of the flow duct. The electrodes of the first grid 
(transmitter electrodes) are successively charged with short 
voltage pulses. The currents arriving at the electrodes of the 
second grid (receiver electrodes) are recorded. After a complete 
cycle of transmitter activation, a full2D matrix of local 
conductivities is obtained.  

Special methods of signal acquisition5 guarantee that each value 
of the matrix depends only on the local conductivity in the 
immediate vicinity of the corresponding crossing point between 
transmitter and receiver electrodes. 

In the current test, the mesh sensors are placed at four positions 
in the flow path. The first sensor (Fig. 3) is flanged to the reactor 
inlet nozzle in Loop N°1, and records the tracer concentration at 
the reactor inlet. The second and third sensors are located at the 
inlet and outlet of the downcomer.  

The downcomer sensors consist of 64 radial fixing rods with 
orifices for four circular electrode wires (Fig. 4). Small ceramic 
insulation beads separate the rods and wires electrically. The 
rods act as radial electrodes; i.e. each rod corresponds to a 
circumferential measuring position (Fig. 5). 

 

  

Fig 3 Mesh sensor for measuring tracer distributions in front of 
the reactor inlet nozzle (left) and measurement positions (right) 

 

  

Fig 4 Wire mesh sensor in the downcomer for radial 
measurements (64x4 measuring positions) 

       

 

Fig 5 Measurement positions at the two downcomer sensors (upper 
and lower) 

 

The fourth sensor is integrated into the core support plate: 2X15 
electrode wires are arranged such that the wires of the two planes 
cross in the centres of the coolant inlet orifices of each fuel 
element (Fig. 6). In this way, the tracer concentration can be 
measured for each individual fuel element channel. 193 
conductivity measurements at the core entrance were applied to 
the test facility (Fig. 7). All sensors provide 200 measurements 
per second. A measuring frequency of 20 Hz is sufficient; only 
ten successive images are averaged into one conductivity 
distribution. 

Fig 6 Wire mesh sensor at the core entrance 

 

 

 

Fig 7 Measurement positions at the core sensors 

EXPERIMENTAL 
As the ROCOM facility cannot be heated, the higher density of 
the cold ECC water is simulated by adding sugar (glucose). In 
this case of experiment described here, a density difference of 
10% was used. A sugar solution with a density of 1100 kg/m³ has 
a viscosity a factor 3 higher than that of pure water. This lead to 
creating a density difference and stratification potentially 
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dangerous between the relatively cold Emergency Cooling 
Water (ECC) and the primary loop inventory allowed simulating 
a Loss Of Coolant Accident (LOCA) lead to a Pressurized 
Thermal Shock (PTS) scenario, due to the relatively cold 
injected water being not sufficiently mixed with the water 
already present in the cold legs. 

Assuming similarity between the tracer concentration and the 
temperature and boron concentration fields, a variety of different 
experiments can be carried out, which gives the ROCOM facility 
great flexibility. As standard, the reference values correspond to 
the unaffected coolant (index „0‟) and to the coolant at the 
„disturbed‟ reactor inlet nozzle (index „1‟). The difference 
between the two reference values is the magnitude of the 
perturbation. A mixing scalar Θx,y,z,t may thus be defined as 
follows: 

Θx,y,z,t = σx,y,z,t−σ0
σ1−σ0

 ≅  Tx,y,z,t−T0
T1−T0

 ≅  CB,x,y,z,t−CB,0

CB,1−CB,0
         

(1) 

In which σ, x, y, z, t denotes the (measured) electrical 
conductivity; T is the (derived) temperature, and CB the (derived) 
boron concentration. Which of the two parameters ‒ temperature 
or boron concentration ‒ is represented by the measured mixing 
scalar depends on appropriate choice of the reference values, and 
the stipulation of the boundary conditions in the experiment.  

 

NUMERICAL MODELLING 
The analysis has been performed with CFD ANSYS CFX-17.0 
code for simulations of turbulent flow and mixing in ROCOM 
facility by solving the Reynolds Averaged Navier Stokes (RANS) 
equations with k-w-SST turbulence model associated to a 
transport equation of an additional, user-defined, scalar variable 
simulating the tracer. For  the  study  presented  here,  the 
Boussinesq  approximation  is  applied  to  take  into  
account  density  effects  on  the  momentum  equation. 
The density is taken constant in all terms of the Navier-Stokes 
equations with exception of the gravity term. There, the density 
is a function of   the   local   temperature   or   
concentration,   respectively. 

The discretization in space is a 2nd order element-based finite-
volume method with 2nd order time integration. It uses a coupled 
algebraic multigrid algorithm to solve the linear systems arising 
from discretization. The discretization schemes and the multigrid 
solver are scalably parallelized. CFX works with unstructured 
hybrid grids consisting of tetrahedral, hexahedral, prism and 
pyramid elements. 

Meshing of the calculation domain  

This meshing was created   by   ANSYS   ICEMCFD with 
unstructured hybrid grids consisting of tet, hex, prism and 

pyramid elements. The investigated   mixing phenomena 
occur in the cold leg n°1 during the ECC injection, in the 
downcomer and the lower plenum. All domain  from  the  
cold  leg  to  the  core  support  plate  has  been 
discretized  with  fine  meshes.  The total mesh contains 
about 2,377,780 hexa 3,222,496 tetra, 8,594,10 prisms and 
29,131 pyramides;  i.e. about 6,488,817 total number of cells. 
A total view of the mesh is shown in Fig.8. 

Table 1. Grid information 
 

 Mesh type Number of cells 

1 Hex 2,377,780 

2 Tet 3,222,496 

3 Prisms 8,594,10  

4 Pyramids 29,131 

5 Total number of cells 6,488,817 

 

 

 

Fig.8 View of mesh 

 

Boundary conditions  

For the simulation calculation, the boundary conditions of the 
experiment were scrupulously reproduced namely: 

• The velocity of the ECC injection line is 0.64297 m/s. The 
injection time is from 5 s to 15 s (Dirac impulse) after start of 
loop circulation in Cold Leg N.1.  The injection is initiated by 
opening the upstream valve.   

• The fluid used in the ECC injection line is glucose-water 
(10% density difference to tap water density) with a density of 
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1100 [kg/m3] 

• The velocity in Cold Leg No.1 is 0.291 [m/s]. 

• The other 3 loops are left open.  

• Pressure-controlled outlet boundary condition 

• Uniform inlet turbulent intensity profile (5%) 

• Upwind discretization scheme for advection terms 

CFD setup 

In the current study a convergence criterion of 1 × 10− 6 was 
used to ensure negligibly small iteration errors. The time step 
used was 0.05 s. Glucose-water, which had a higher density, was 
used as a tracer. It has been modeled with the multi-component 
model of ANSYS CFX. In this case, the components share the 
same fields of speed, pressure and temperature. The properties 
of multi-component fluids are calculated assuming that the 
constituent components form an ideal mixture. Glucose-water is 
modeled as a component with a different density and viscosity 
than water. The mass fraction of the glucose water can be directly 
related to the mixing scalar described in Eq. (1). 

However, the use of simplified models to describe turbulence 
imposes restrictions on the resolution in space and time that can 
be used in a CFD calculation. This leads to modeling errors and 
numerical errors that give more or less inaccurate results. A 
higher level of quality assurance in the validation of CFD codes 
has been achieved by consequently applying BPG9. 

RESULTS AND DISCUSSION 
Qualitative and quantitative assessment of the CFX 
simulation versus experiment results   

In  order  to  demonstrate  the  capability  of  CFD  

codes  to predict  the  complex  phenomena  of  mixing  

flow, a comparison was carried out between the calculated 

results performed with the commercial code ANSYS CFX and 

the measurements from the experimental setup. 

Qualitative analysis  

In Figs 9a, 9b and 9c are plotted the distribution of the mixing 

scalar in the cold leg n°1 with  contours  in  color  shade,  

which  gives  a better illustration of the mixing profile for the 

instant “end of ECC injection”. A horizontal cut plane through 

the Centre of the cold leg, a vertical cut plane trough the inlet 

nozzle and ROCOM 3D are shown. The non-homogeneous 

distribution of the mixing scalar is good visible. 

Fig. 10 shows the tracer path and its distribution in ROCOM 

since the end of the injection from t = 15s to t = 100s. After 

completion of the injection, the cold leg flow transports the ECC 

water towards the reactor inlet. It is clear that the flow entering 

the downcomer is divided into two streams flowing right and left 

in a downward spiral around the central barrel. The surface 

covered by the ECC water is first larger under the inlet nozzle 

under the effect of buoyancy. As the ECC flow is still present, 

the ECC water is then transported laterally along the spillway on 

the opposite side of the cold branch no. 1 caused by the pulse of 

the injected jet.  In order to better illustrate the trajectory of the 

tracer and its distribution in ROCOM, the opposite part of the 

ECC injection was also represented in Fig.10. 

The mixing scalar is much more expressed for instances between 

15 and 45 s. The two streaks of the flow merge together after 35 

s of the end of the injection and move down through the 

measuring plane of the upper downcomer sensor as illustrated in 

Fig. 11 and after the path of tracer goes to into the lower 

downcomer Fig. 12. Such a flow distribution is typical for single-

loop operation. It is dominated by the momentum insertion due 

to the operating pump or high natural circulation flow rate.  

This ECC water transport on the opposite side of the injection is 

visible in Fig. 13 representing the main plans of Rocom Mesh 

Sensors. Almost the entire amount of ECC water exceeds the 

measurement plane of the upper downcomer sensor with a more 

concentrated azimuthal distribution on the opposite side of the 

affected loop to reach the plane of the cold branches (Z = 0) at 

the instance between 55s and 100s. 

Figure 14 show the snapshots of the the core inlet distribution of 

the mixing scalar in the three times 45s, 55s and 100s. This 

snapshot is deduced from the experimental results ROCOM 

D10M10, the first tracer appears at two positions on the opposite 

 

a) 

 

b) 

 

c) 

Fig. 9 Mixing scalar in ROCOM, at the end of ECC injection 
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side of the input plane of the core with respect to the position of 

the ECC injection loop. This same qualitative behavior is 

reproduced by ANSYS-CFX shown in Fig. 15 at a given instant. 

 

Fig. 10  Instantaneous mixing scalar distributions in ROCOM, 

from t =15s to 100s 

 

Fig. 11 CFX calculations of the Upper Downcomer distributions 

from time instants 10, 20, 30 

 

Fig 12 CFX calculations of the Lower Downcomer distributions 

from time instants 10s, 20s, 30s 

 

Fig. 13: Instantaneous mixing scalar distributions in ROCOM, 

from t =15s to 100s 

 

Fig 14 Snapshots of the core inlet distributions from time instants 

45, 55, 100 

 

Fig 15 CFX calculations of the core inlet distributions from time 

instants 45, 55, 100s 

CONCLUSIONS 
This paper shows results of test numerical simulations of 

ROCOM PTS experiments proposed by IAEA as an 

international benchmark kindly made available by Helmholtz 

Zentrum Dresden-Rossendorf, Dresden Instutute 
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(HZDR)/Germany to perform detailed calculations of the 

proposed test. 

Experimental data obtained for density difference between ECC 

and loop water inventory were compared to numerical 

predictions from the CFD software packages CFX in terms of 

tracer concentration space and time distribution both in the 

downcomer and at the core inlet.  

Qualitatively, the formation of the perturbed region in the 

downcomer and in the lower plenum was correctly predicted. 
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Conference Topics: 
 

2nd Call for Papers 
 

The 1st International Conference and School on Radiation Imaging (ICSRI-2021) will 
held for the first time at the University of Sétif1 and will provide an international forum 
for discussing current research and developments in the domain of radiation imaging 
and applications that includes all kind of medical and industrial techniques.  
 

Conference topics will include: 
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      First International Conference and School on Radiation  
      Imaging (ICSRI-2021) 

26-30 September 2021, Setif, Algeria 

Secretary of the ICSRI-2021 
Mobile: +213(0) 557363347 
Phone: +213(0) 36620136 
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2020/ICSRI2020 

With great pleasure, the Organizing 
Committee announces the first call for 
abstract submission and school application 
for the 1st International Conference and 
School on Radiation Imaging (ICSRI-2021), to 
be held virtually at Ferhat Abbas-Seitf1 
University, in Setif, Algeria, from 26 to 30 
September, 2021. The conference is 
supported by the Algerian Atomic Energy 
Commission (COMENA). 
 
The conference will include plenary sessions 
with conferences presented by eminent 
scientists, and orally and in poster sessions 
covering the different conference topics. 
The invited talks will be chosen to review 
recent advances in different areas covered 
by the conference. 
The conference will be followed by a three 

(3) days school for doctorate students 
and newly qualified academics and 
researchers in the field of radiation 
imaging and applications (25 participants 
max.). The program of the school will 
include lectures and practical sessions on 
three topics: 1. X-ray tomography, 2. 
Scanning Electron Microscopy (SEM), and 
3. Artificial intelligence, Deep learning, 
and Image processing in Radiation 
Imaging.  
The conference proceedings will be 
published in a special issue via an 
academic publisher. 
The conference will be held virtually by 
videoconference while the school will be 
face-to-face in classroom and laboratory. 

 

 

 Track 1:  Non-medical radiation imaging 
(X-ray, γ-ray, neutrons, electrons…) 

 
Track 2:  Radiation Imaging methods and 
systems development 

 
Track  3:  Radiation Imaging Simulation 
and modeling 

 
 

Track  4:  Molecular Imaging and Nuclear 
Medicine (SPECT, SPECT/CT, PET/CT, 
PET/MR, etc) 
Track  5:   Medical Radiation Imaging (CT, 
Mammography, Fluoroscopy, MRI, US, etc) 
 
Track  6:   Advanced Imaging Methods 
(Image Reconstruction, Artificial 
Intelligence, Radiomics, Theragnostic, etc) 

Track  7: Image Processing and Data Analysis Techniques 
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Submission Opening 
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August 20, 2021. 
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September 1, 2021 
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 Cuicul (Djémila- 55 km from Setif city-) 
was built at 900 meters of altitude during 
the 1st century AD as a Roman military 
garrison. It became a UNESCO World 
Heritage Site for its unique adaptation of 
Roman architecture to a mountain 
environment. Significant buildings in 
ancient Cuicul include a theatre, two 
fora, temples, basilicas, arches, streets, 
fountain and houses. The exceptionally 
well preserved ruins surround the forum 
of the Harsh, a large paved square with 
an entry marked by a majestic arch.  
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• The registration fees  include: 
 

o  Lunch, banquet,  
 
o  Conference proceedings and conference bag 
 
o  City tour & Gala dinner 
 
o For the school participants diners are included in 
registration fees. 

 
• Students are required to provide a copy of a valid ID 

that certifies their full-time student status. 

Sétif (the capital of Sétif Province) is a town in north-eastern Algeria, 1096 meters 
above sea level. It is the second most populated Province after the country's 
capital. The streets are tree-lined with a fountain and theater, giving the town 
French feel. A large amusement park is located in the center of the city where the 
city Zoo can be found. The ruins from Roman, Byzantine, Islamic and colonial eras 
adorn the city center. 

The local economy deals both with trade and industries. The trade is mainly in 
grain and livestock from the surrounding region. Sétif has become the commercial 
center of a region where textiles are made, phosphates are mined and cereals 
grown. Other industries are woodworking, manufacture of carpets and metal 
handicrafts. 

Sétif is connected by rail as well as the main national highway.  The city has also 
an international airport. 
 

The registration fees are: 
 

Regular scientists:     12000DZD  A I * 
 6000DZD  ANI** 
   
Doctorate students 8000DZD  AI 
 4 000 DZD ANI 
   
Participant to the school 15000DZD   AI 
 5000DZD  ANI 
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The first International Conference and School on Radiation 
Imaging (ICSRI-2021) was held, for the first time, at the 
University of Sétif1. The conference has provided a forum to 
scientists, researchers and students to discuss current 
research and development in the field of radiation imaging 
and image processing. Due to the Covid-19 pandemic, the 
conference was organized via online mode from 26 to 27 
September 2021. The Algerian Atomic Energy Commission 
(COMENA) has kindly supported the organization of the 
conference with its research centres (CRNB, CRNA and 
CRND). The conference has included plenary sessions with 
conferences presented by eminent scientists, and orally and 
in poster sessions covering the different conference topics. 
The invited talks have reviewed recent advances in radiation 
imaging. In total 43 interesting works were presented during 
the conference. A three days practical school for doctorate 
students and newly qualified academics and researchers was 
also organized for 25 participants. The program of the school 
included lectures and practical sessions on three main topics: 
1) X-ray tomography, 2) Scanning Electron Microscopy (SEM), 
and 3) Image processing.   

General Chair: Pr. Fayçal Kharfi, Ferhat Abbas-Setif1 University, 
Algeria 

Deputy Chair: Dr. Layachi Boukerdja, Nuclear Research Centre of 
Birine, Algeria 

Committee Members:  

Dr. Djamel Edine Chouaib Belkhiat, Ferhat Abbas-Setif1 
University, Algeria 

Pr. Hacene Azizi, Ferhat Abbas-Setif1 University, Algeria 

Pr. Adelouahab Moussaoui, Ferhat Abbas-Setif1 University, 
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Dr. Melia Hamici, Ferhat Abbas-Setif1 University, Algeria 

Dr. Chouaba Seif Eddine, Ferhat Abbas-Setif1 University, Algeria 

Dr. Ammar Mosbah (Ferhat Abbas-Setif1 University, Algeria) 

Dr. Djilali Khelfi, Atomic Energy Commission, Algeria 

Dr. Bilal Sari, Ferhat Abbas-Setif1 University, Algeria 
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