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Preface 
The second international conference and school on radiation imaging and nuclear medicine (ICSRI-2023)
was held from 11 to 15 June 2023 at Ferhat Abbas-Setif1 University (UFAS1). For the second time, the
scientific event has been organized in partnership with the Algerian Atomic Energy Commission
(COMENA) and its different research centres. The conference was a real opportunity to bring together 
researchers, practitioners, and students of different backgrounds to discuss the latest advances in
radiation imaging, nuclear medicine, and medical image processing. 
The conference was able to cover different topics related to radiation imaging and nuclear medicine
physics and technology, such as radiation detectors, imaging techniques and modalities, simulation and
modelling, and image processing. Some special topics of interest on radiation therapy and medical
imaging were also included. The conference featured keynote speeches from renowned experts and oral
and in poster presentations from researchers and PhD students. 
In addition to the conference, there was a school of three days organized just after the conference for
students and early-career researchers. The school aimed to provide an opportunity for participants to 
learn about fundamentals and practical aspects of computed tomography, nuclear medicine, laser
application in medicine, as well as to engage in hands-on training sessions and workshops on new trends
in data analysis and image processing with a special focus on artificial intelligence and deep-learning. The
school was focused on the following main topics: 

The role of Monte Carlo simulations in Molecular Imaging and Dosimetry, 
Advanced Anthropomorphic Computational Models, 
Medical lasers- Physics, Clinical Applications and Safety Management, 
Mammography: Physics, Image Quality, and Quality Control, 
Deep Neural Networks for Medical Data Analysis, 
X-ray and Neutron Transmission Computed Tomography. 

The organizers were committed to ensuring a productive and enjoyable experience for all participants. 
Researchers, practitioners, and PhD students from different research institutions, with an interest in
radiation imaging and nuclear medicine, attended this exciting event and presented a very interesting 
works. 
The General chair of the organizing committee would like to thank and highlight the outstanding efforts 
of the local organizing committee and the international scientific Committee. We are extremely grateful 
to the Dean of the Faculty of Sciences of Ferhat Abbas-Sétif1 university, Prof. Layachi Louail, for his
encouragement in the organization of the ICSRI-2023. Thanks are also extended to our very efficient
partners: the Algerian Atomic Energy Commission (COMENA), the Nuclear Research Centre of Birine
(CRNB), and the Nuclear Research Centre of Algiers (CRNA).  
 
Prof. Fayçal KHARFI
General Chair of the ICSRI-2023 Conference
Director of the School on Radiation Imaging and Nuclear Medicine
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doctorate thesis and research projects in the fields of radiation dosimetry and application, radiation 
therapy, and medical imaging.  He contributes to the organisation of numerous national and international 
conferences and workshops on medical physics and radiation application.  
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Detection of the primary location of a neuroendocrine tumor by

18F-FDG PET-CT
R. Belayounia, I. Meddeba,*, M. Somai a, O. Ben Hamidaa, I. Yeddesa, A. Mhiri, a

a Nuclear Medicine Department, Tunis medicine University, Tunis-1006, Tunisia.

ABSTRACT: Neuroendocrine tumors (NET) are rare and heterogeneous tumors that can arise anywhere in the body. 
Several metabolic imaging examinations can contribute to the positive diagnosis of these tumours, the choice of which depends
on several factors. The purpose of this work is to show the contribution of 18Fluor-deoxyglucose (FDG) positron emission 
tomography (PET) coupled to computed tomography (CT) in the detection of the primary site of a neuroendocrine tumor 
discovered by a single metastasis. A 75-year-old patient who presents with pain in the right hypochondrium is considered. The 
morphological examinations (abdominal ultrasound and hepatic MRI) requested as first intention, demonstrated the presence of 
a well-limited tissue mass of 6 cm long axis of segment VI of the liver, suspicious. The patient underwent liver metastasectomy. 
The pathological examination and the immunohistochemical complement found the appearance of a hepatic metastasis of a 
poorly differentiated neuroendocrine carcinoma with a tumor proliferation index (Ki67) revealed at 80%. Somatostatin receptor 
scintigraphy was negative. The patient was sent to us for an 18F-FDG PET scan. The examination was performed 60 minutes 
after IV injection of 3MBq/Kg of 18 FDG and included PET-CT acquisition from the vertex to the mid-thighs. The 18FDG PET-
CT examination shows the presence of a supracentimetric pulmonary nodule under the upper lobar pleural of the intensely 
hypermetabolic right lung with doubt about the presence of another smaller nodule in the contralateral posterobasal segment. The
examination was otherwise unremarkable. The patient had a transthoracic biopsy whose histological examination found the same 
histological type of hepatic localization. NETs are classified into different histoprognostic grades according to their degree of cell 
differentiation and their proliferation index. The nuclear medicine imaging strategy is based on these grades. 18F-FDG PET/CT 
is the first-line examination, requested in the presence of a grade 3 tumor or having a Ki 67 > 10%.
Keywords: Neuroendocrine tumor; Primary location; 18FDG PET-CT examination.

INTRODUCTION
Neuroendocrine tumors (NETs) are rare and heterogeneous 

pathologies. They can start anywhere in the body. Metabolic 

imaging examinations are important in the detection and diagnosis 

of these tumors. The choice of the examination depends on several 

factors.  

The aim of this case report is to show the contribution of positron 

emission tomography (PET) coupled with 18Fluor-deoxyglucose 

(FDG) computed tomography (CT) in the detection of the primary 

site of a neuroendocrine tumor discovered by a single metastasis 1.2.

EXPERIMENTAL
A 75-year-old patient who was recently complaining of a right 

hypochondriac pain. Morphological examinations (abdominal 

ultrasound and hepatic MRI) were done. We noted the presence of 

a well-limited suspicious mass of 6 cm long axis of segment VI of 
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the liver. The patient underwent a hepatic metastasectomy. 

Pathological examination and immunohistochemical complement 

concluded to a poorly differentiated neuroendocrine carcinoma with 

an estimated tumor proliferation index (Ki67) of 80%. Somatostatin 

receptor scintigraphy was negative. The diagnosis of liver 

metastasis was confirmed. The patient was referred for 18F-FDG 

PET scan.

The examination was performed 60 minutes after IV injection of 

3MBq/Kg of 18 FDG and included a PET-CT acquisition from the 

vertex to the mid-thighs.

RESULTS AND DISCUSSION
The 18FDG PET-CT scan showed a supra centimetric sub pleural 

upper lobar lung nodule of the right lung intensely hypermetabolic 

with a doubts of presence of another smaller nodule in the 

contralateral posterobasal segment (Fig.1). The examination was 

unremarkable elsewhere. The patient underwent a transthoracic 

biopsy, the anatomopathological examination found the same 

histological type of the hepatic location. Pulmonary neuroendocrine 

tumors arise from bronchial mucosal cells known as 

enterochromaffin cells which are part of the diffuse neuroendocrine 

system. The pathological spectrum of pNETs ranges from low-

/intermediate-grade neoplasms such as bronchial carcinoids, also 

known as typical or atypical carcinoids, to high-grade neoplasms as 

large-cell neuroendocrine carcinoma and small-cell lung cancer3.

Controversial results have been reported on the diagnostic accuracy 

of fluorine-18-fluorodeoxyglucose positron emission tomography 

in bronchial carcinoids.

Fig.1: Upper lobar right lung nodule on the FDG PET/CT scan corresponding on CT images to a pulmonary nodule with associated post 
obstructive atelectasis, without evident extensive hilar or mediastinal lymph node enlargement.

CONCLUSIONS
NETs are classified into different histopronostic grades according 

to their degree of cellular differentiation and proliferation index. 

The imaging strategy in nuclear medicine is based on these grades. 

18F-FDG PET/CT is the first-line examination requested for a 

grade 3 tumor or a tumor with a Ki 67 > 10%.
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Knowledge extraction from gene expression images: Adaptation 

of association rules mining for theory of evidence
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ABSTRACT: Imperfection is a common feature in almost all real-world data, although it usually hides crucial knowledge 
of major interest. Introducing theories of uncertainty to modeling gene expression areas in the embryo will help to extract hidden 
relationships between genes, while taking into account possible imprecisions in the boundaries of gene expression zones.
Following a series of pre-processing steps on these images to improve feature extraction, the aim of our work is to propose an 
evidential theory based modeling of spatiotemporal data from In Situ Hybridization (ISH) sequences of images representing gene 
expression zones in different developmental phases of the embryo of the model species "Edinburg Mouse". We propose an 
adaptation of the Apriori algorithm to the evidential theory (named also Dempster-Shafer theory or belief theory) for mining 
association rules in the uncertain context. We have extracted two types of association rules, which will represent: 
- In primal: the spatial correlations between gene expression areas in the embryo 
- In dual: the relationships between genes that co-express in these ISH image sequences. 
The biological interpretation of the obtained results confirmed their adequacy with the domain principles. The extracted 
knowledge will help biologists to better understand the interactions between genes, to discover the functional role of co-expressed 
groups of genes, and to model the gene expressions to detect possible anomalies.
Keywords: Knowledge extraction; Association rules; ISH images; Genetic-expression; Evidential theory.

INTRODUCTION
Bioinformatics, a topical field of research, uses computational 
methods to process heterogeneous and vital biological data, that 
is actually in wide expanding, but often imprecise and/or 
incomplete, and their interpretation is still a challenge1. Gene 
expression data integrate crucial knowledge about the stages of 
embryonic development of some model species, but (in main 
part) remain undiscovered and therefore unexploited by 
biologists.

Among the powerful forms of representation of gene expression 

are the ISH image sequences which indicate, in situ, zones where 
express each gene in the embryonic growth phases of some 
typical species (like "Edinburgh Mouse")2. These images form a 
spatiotemporal biological database and their study will help 
biologists to analyze in situ and understand the impact of gene 
expression in each embryonic phase, which is fundamental to 
detect any anomalies due to genetic causes during the 
preliminary developmental phases of living species (Fig.1).
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Fig. 1 : Example of genetic expression images of gene named "ATF4" mapped to the original image of a standard Edinburgh Mouse embryo 

(image on the left) during development phases TS16, TS17, TS18 (reference : EMAGE: 3052 in the online database: www.emouseatlas.org). 

The zones of genetic expression are colored according to the level of this expression2

For extracting hidden models and non-trivial knowledge, 
Association Rules (AR) are one of the most powerful algorithms 
in data mining, used to extract the relationships between a set of 
attributes initially in binary format3. But, in the real world, 
human generally dispose and deal with ambiguous knowledge 
about any situation, either because it has doubt about their 
veracity (this is ”uncertainty”) or it finds difficulties in stating
them clearly (it is the ”vagueness”)4.

Therefore, the binary representation of real-world data will 
generally cause a great loss of precision in their quantification 
and their semantics. Also, ignoring the possible imprecision in 
these data will influence the relevance of the results of the 
approaches proposed in the literature. In this work, we propose 
an Evidential modeling AR Mining (EARM), supporting the 
nuanced representation of data which is usually the closest to 
human reasoning and the reality of these data.
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EXPERIMENTAL
The proposed approach is described in the organigram of figure 2.

Fig. 2 : Detailed steps of the proposed approach
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A sequence of preprocessing operations is carried out starting 

with the reduction of the dimensionality of studied images (and 

thus of the algorithmic complexity) while keeping the maximum 

of their variability, followed by their vectorization for features 

extraction according to the proposed modeling, this process leads

to generating evidential transaction tables, which preserve almost 

all the knowledge contained in these sequences of studied ISH 

images. After that, we propose an adaptation of the Apriori

algorithm to the Evidential Theory5 (named also Dempster-

Shafer Theory or Belief Theory) for mining association rules in 

the uncertain context by detecting:

- In primal: regions (adjacent pixels representing biological 

organs) that undergo synchronized genetic expression.

- In dual: sets of genes that co-express in different stages of 

embryonic development.

Also, the nuanced level of genetic expression (strong, moderate,

and not detected) will be taken into consideration to extract 

features that represent the reality of these not binary biological 

data. All this in order to discover biological knowledge hidden in 

these ISH images. 

RESULTS AND DISCUSSION
The figure below shows an example of AR extracted in the primal 

(relationship between boxes (see fig3-A) and an example of AR 

extracted in the dual (relationship between genes (see fig3-B).

Fig. 3-A : Example of AR between boxes (AR in primal)

261_F  (484_F  262_F)

 

Fig. 3-B : Example of AR between genes (AR in dual)

(TS16_Zfp410 TS17_Smad4) (TS17_Ndrg3 TS17_Rfx3)

The relations (between co-expressed genes) detected via the 

extracted ARs were also (for the most part) recognized (therefore 

approved) totally or partially by the String-db6 platform, which 

proves the relevance of our results. The example below (fig. 4) 

shows the itemsets forming an AR extracted via the proposed 

approach, as well as a graph generated by String-db supporting 

the existence of a strong link between these genes.

Fig. 4: Example of graph generated by String-db for detected AR 

CONCLUSIONS
The biological interpretation of the obtained results confirmed 

their adequacy with the domain principles. The extracted 

knowledge will help biologists to better understand the 

interactions between genes, and to discover the functional role of 

co-expressed groups of genes, also to model the gene expressions 

to detect possible genetic anomalies.
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Simulation of Target Material Choice on Laser proton Dose 

Distribution for Biomedical Imaging
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ABSTRACT: Proton imaging is a technique that uses accelerated protons in order to get morphological images. To 
minimise the cost/size of the instruments that produce these beams, a generation of compact accelerators have emerged called 
Laser-Plasma Accelerators (LPA) 1. This study aims to compare and optimize the different dose distributions, obtained from the 
interaction of CPA (Chirped Pulse Amplification) laser pulses with two selected groups of metallic and polymer targets, thus 
shows that LPAs can integrate the proton imaging field. This work is split into two parts. First, in the framework of the Target 
Normal Sheath Acceleration(TNSA) regime2, we develop a semi-analytical model within GNU Octave. A parametric study 
optimizing the characteristics of the accelerated proton beam is established to find a range of TNSA parameters that ensures a 
good proton beam, namely their number, energy and its spot size2. Then, we introduce the outputs resulting from the first part as 
initial values for the MC simulation, using the Gate software, where a comparative study of the dose distributions generated from 
proton beams using two target material types, metallic and polymers in the acceleration process3 is realized. Finally, the simulation 
of the interaction of laser-matter and the study of the possibility to introduce them to proton radiography are proceeded. The 
results show an energy plateau for all the targets. The energy profiles show a prominent quasi-monoenergetic proton beams, 
suitable to generate high quality dose distribution, compared to the other metallic targets. It means that, they can be used to 
generate high mono-energetic proton beams that pass through the patient and reach a detector. These can give lower energies for 
the conditions given but an important number of protons. The influence of the target material choice on the dose distribution is 
displayed. In the framework of TNSA regime for LPA process, polymer targets represent a better choice to generate high quality 
dose distribution within the patient meaning high quality proton beams exploitable for proton imaging purposes. Therefore, they 
represent a good substitute for metallic targets, as they are rich in hydrogen atoms.

INTRODUCTION
Protons have shown incredible properties in radiation therapy 
due to their sharp and precise dose delivery into cancerous 
tissues, this ability shows better sparing of healthy tissues 
compared to conventional radiation therapy that uses photons 
instead of protons, and better dose distribution due to the Bragg 
peak physical property of these charged particles4. However, this 

technique requires great accuracy in terms of the range that the 
protons cross. To this day, we use X-Rays CT scans to get the 
patient’s anatomy and convert electronic density of CT scans 
into protons stopping power therefore, calculate the protons’
range. Yet, uncertainties up to 3 mm arise, affect the range of 
protons and jeopardize the dose distribution. These uncertainties 
are caused by the stopping power conversion method, the 
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inaccuracies in the excitation energy and electron density values 
assumed for the tissue and the different densities of the organs 
that protons encounter through their path. To alleviate the 
uncertainties, the implementation of imaging technics that would 
provide direct information on the proton path is necessary5. We 
focus on proton radiography; this technique relies on sending 
high energy with low intensity protons through the patient and 
reconstructing an image based on data displayed as the Water 
Equivalent Thickness (WET). Knowing that the energy loss of 
the transmitted protons represents the source of the image 
contrast resulted6. Many systems of proton radiography have 
been proposed, but we put our interest into proton radiography 
using Laser Plasma Accelerators (LPA). This type of 
accelerators has gained quite an interest in recent years in the 
acceleration field of heavy charged particles. A type of 
acceleration regime that caught our eye is Target Normal Sheath 
Acceleration (TNSA), it has been studied thoroughly both 
experimentally and theoretically7. It is an acceleration 
mechanism, which is induced by the interaction of high laser 
pulses up to 1022W/cm2 with a duration pulse of ~fs, with 
microscopic targets. There are very few published works 
concerning Laser Driven Radiography, for example: 8,9,10, even 
less on TNSA driven radiography. The attention devoted to the 
work cited in the 10 reference is due to the authors’ use not only
of LPAs but also of the TNSA regime to propose a setup for the 
emergence of these accelerators in the medical field of imaging
by protons in radiography. The method used in this work is 
displayed on the section below. A theoretical model for the 
TNSA mechanism is suggested, where a parametric study on the 
target material choice for laser-matter interaction is performed,
and the resulted characteristics obtained are simulated within the 
Gate software, to get depth-dose profiles for each material.

METHODS
To carry out this work, we propose a theoretical model 
implemented into the GNU Octave software, describing the 
interaction of ultra-high intensity laser with two types of targets: 
metallic and polymers using the TNSA regime. A high main laser 
pulse accelerates electrons created in the pre-plasma on the 
target’s front surface. The electric field produced by the charge 
separation sheath on the rear surface of the microscopic target 
will accelerate the protons and ions perpendicular to it as some 
hot electrons pass through it and leave the rear surface through 
vacuum. Thus, the acceleration of protons depends on the 
production of hot electrons in the pre-plasma produced at the 
front surface of the target. The temperature, number, absorption 
factor, and angle of divergence of the hot electrons are used 
to define them.

Semi-Analytical Model for TNSA X Proton 
Radiography

The main challenge encountered is to develop a semi-analytic 
model for proton radiography, in the framework of the TNSA 
regime, for this the basic radiography equation is used. The 
physical procedure for this type of radiography can be explained 
by taking on the angular distribution of Multi Coulomb Scattering
(MCS), and a basic exponential formula for nuclear attenuation11.

Main equations that govern our model are: 

• The maximum cut-off energy is given by:

 =2  + + 1 P
 2                        (1)

Where represents the hot electrons temperature (Energy 
Boltzmann of hot electrons), 2  (1) is the 

normalized acceleration time with = 1.3  .  , are 
the laser pulse duration and the plasma frequency respectively.

• The energy spectrum is given by:

=                           (2)

Where is the number of electrons at the rear surface of the 
target and R is their velocity12.

• The basic Radiography Equation is given by:

( ) = 1  ,                        (3)

where ( ) describes the transmission of protons, Li is the areal 
density for the i’th material, i is the nuclear attenuation factor for 
the i’th material, cut is the angle-cut imposed by the angular 
collimator and 0 is the multiple Coulomb scattering 11.

The results of this study are then simulated into Gate software, 
where we simulate the interaction of resulting proton beams with 
the required maximum cut-off energy of protons, their number and 
spot size of the beam, and study the effects of the LPAs on the dose 
distribution and the effects they have on proton radiography.

RESULTS AND DISCUSSION
First, the evolution of the maximum cut-off energy with different 
target types: metallic (Al and Ti) and polymers (PMMA and 
PET), as a function of the laser radius is studied. Then, the 
interaction of a high-powered laser with an intensity of 
I=1.45 · 1020 W/cm2, a laser pulse of   = 800fs and a 
wavelength = 0.8μm with the target’s thickness d = 20μm 
of Al, Ti, PMMA and PET is simulated. Results are shown in Fig.
1 and Fig. 2. We observe in Fig. 1, for the four targets a flat line 
which means a constant energy for the metallic target (up to 

160MeV) and polymers (up to 163MeV), respectively. This 
flat line is more prominent and starting earlier for polymers 
compared to the metal Al. This is described by the quasi-mono-
energetic beam given by the radius of the laser beam from the 
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laser radius = 5μm and = 3μm for metallic targets and 
polymers, respectively. This would be the first step into getting 
mono-energetic beam from LPAs and their application clinically. 
Thanks to the results obtained from the theoretical model, which 
consist on finding the adequate cut-off energy, number of 
protons and the spot size to get a mono-energetic and high-
energy beam, the Fig. 2, represents the energy spectrum for the 
materials Al, Ti, PET and PMMA, respectively. Finally, the 
interaction of our proton beams with a water phantom is now 
simulated, and the dose distribution is studied. The results are 
shown in Fig. 3. The polymer targets allow us more depth 
penetration into the water phantom compared to the metallic 
targets: 4.3cm and 7.0cm for Al and Ti, respectively. Moreover,
7.6cm for both PET and PMMA. This means our proton beam 
resulting from the interaction of laser with micrometric targets 

of PET and PMMA allows us to enter the object, leave it and 
attain the detector to get an exploitable image of the objects to 
be imaged. This leads us to believe that polymer targets 
constitute a better choice in producing high quality proton beams
usable in proton therapy for imaging purposes.

Compared to Wurl10’s work, we focus on the laser interaction 
part. Different types of targets are chosen, different laser 
parameters are explored (radius of laser beam , pulse duration

, wavelength ) and tested to prove the laser and target 
choice can influence on the proton beams used, in our case
proton Radiography. Higher energies are reached, thanks to the 
polymer targets (PET and PMMA) 163 MeV. This result 
would help us image thicker objects, small animals if we reach 
even higher energies.

Fig. 1: Evolution of the maximum energy as a function of the laser radius rL.for metallic (Al and Ti) and polymer (PET and PMMA) targets.

Fig. 2: Energy spectrum for Al (a), Ti (b), PET (c) and PMMA (d).

(a) (b)

(c) (d)
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Fig. 3: Evolution of the dose as a function of depth z for laser radius rL=0.9μm.

CONCLUSIONS
In this work, it is shown that laser driven proton beams are 
controllable by laser and target parameters. Energies of over 160 
MeV that can penetrate objects of some centimeters are attained, 
and mono-energetic proton beams are found thanks to TNSA 
parameters. This mono-energetic state is more observed for PET 
and PMMA compared to the Al and Ti.

In terms of dose distribution, polymers show a better penetration 
into the object. Protons can cross higher depth before depositing 
their maximum dose into the object to be imaged for polymers 
against metals. These findings conclude that polymer targets are 
a better choice than metallic targets for producing qualitative 
proton beams for proton imaging.
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ABSTRACT: Biomedical image processing and segmentation is currently an important research direction in the field of 
computer vision. With the rapid development of deep learning and the emergence of many neural networks architectures and 
other mechanisms such as vision transformers, medical image processing has become a research hotspot. This work focuses on 
the review of medical image segmentation and semantic segmentation based on state-of-the-art deep learning techniques.
Keywords: Semantic Segmentation; Medical Imaging; Deep Learning; Transformers; Vision Transformer (ViT).

INTRODUCTION

Image processing, analysis and understanding techniques are an 
integral part of many applications used in our time and a wide 
and important research option in the field of computer vision, 
especially image segmentation, which is involved in most 
applications, the most important of which are applications in the 
medical field, where the semantic segmentation of medical 
images is one of the most important things that are currently 
being addressed due to the sensitivity and importance of this 
field, as it is facing an unprecedented development at the present 
time, especially with the development of medical imaging 
techniques and image quality1,2. Currently, vision transformers 
are the leading research direction that is witnessing a wide 
publication revolution. 

EXPERIMENTAL
In this section, we provide a historical overview of image 
segmentation and its use in medical imaging, along with some 

recent research.

Background 

The history of image segmentation dates back to 1965, when with 
the widespread spread of digital images in many fields, 
segmenting them to obtain information from them became a 
necessary matter. Image segmentation is divided into semantic and 
instant segmentation, as shown in Fig. 1. The algorithms and 
techniques used in image segmentation also varied, as shown in 
Fig. 2.

Medical Imaging 

Medical imaging is a non-invasive technology whose goal is to 
create visual images of the internal tissues of the human body by 
acquiring signals by making use of the physical principles of 
sound, light, electromagnetic waves, etc 3,4. There are several 
medical imaging modalities that produce different types of 
medical images as shown in Fig. 3.

.Medical Images Segmentation

Accurate medical image segmentation is the use of computer 
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image processing technology to analyze and process 2D or 3D 
images for segmentation, extraction, 3D reconstruction, and 3D 
display of human organs, soft tissues and diseased bodies5.

Medical images segmentation approaches are classified into organ 
specific and multi-organ categories as shown in Fig. 4.

Fig. 1: Image Segmentation

Fig. 2 : Image Segmentation Approaches
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Fig. 3: Medical Imaging Modalities

Fig. 4: Medical Imaging Segmentation
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Medical Image Segmentation and Semantic 
Segmentation Techniques

Deep Learning Techniques: Fully convolutional network FCN 

was the first successfully deep learning network for image 

semantic segmentation that achieved outstanding results, then we 

find other outstanding segmentation networks such as U-Net, 

Mask R-CNN , RefineNet , and DeconvNet, which have a strong 

advantage in processing fine edges 5. V-Net, RNNs, DeepLab and 

vision transformers were also used. 

Convolutional Neural Networks (CNNs): for the semnatic 

segmentation task the basic network structure is a combination of 

a front-end-based CNN encoder and a back-end-based decoder 5,

the famous used networks are: ResNet 6, VGGNet 7, GoogleNet 
8...ect.

Fully Convolutional Network (FCN)9: was proposed to 

overcome the limitations of CNN where the last fully connected 

layer of CNN was converted into a fully convolutional layer 2,8 .

U-Net 10: is an encoder-decoder network that uses the concept of 

deconvolution, which was built on FCN's architecture. The 

encoding part includes convolutional and pooling layers while the 

decoding part consists of alternating upsampling that upscales the 

size of a feature map, and pooling layers 2,11.

V-Net12: is a variant of U-Net that has compression and 

decompression networks and contains residual connections to 

speed up network convergence and avoid gradient vanishing 

which makes it deeper and gives higher performance 2,11.

Recurrent Neural Networks (RNNs): were designed to handle 

sequences, but when used for semantic segmentation, they 

achieved very satisfactory results due to their ability to learn long-

term dependencies from the sequenced data and their ability to 

hold memory along the sequence 11,13.

Regional Convolutional Networks (R-CNNs): traditional R-

CNN creates region proposal network for bounding boxes using a 

selective search process, then these region proposals are warped to 

standard squares and forwarded to a CNN to create a feature vector 

map as output2. R-CNN variants of are: fast R-CNN, faster R-

CNN, and mask R-CNN.

Deeplab Model: uses the pretrained CNN model Resnet-

101/VGG-16 8. It has some variants that are Deeplab V1, Deeplab 

V2, Deeplab V3 and Deeplab V3+. 

Vision Transformers (ViTs): are a variants of language 

transformer that rely on attention mechanism that compensated for 

the shortcoming of CNN networks in the lack of the ability to 

capture long-range dependencies such as extraction of contextual 

information and non-local association of objects. They were used 

in segmenting medical images semantically due to the fact that 

they scale up more easily and are more robust to corruption 

making them the most appropriate for complex images 3,4-,14-16.

Some famous research papers that uses those networks are 

mention in Table 1.

Table 1. Some Deep Learning Medical Image Segmentation Papers

References Organ Modalities Network Type

Zhang et al. 17 Brain Multi-modality MRI CNN

Moeskops et al. 18 Multi-Organ MRI, CTA CNN

Nie et al. 19 Brain Multi-modality MRI FCN

R. Roth et al. 20 Multi-Organ CT FCN

Gordienko et al. 21 Lung X-ray U-Net



34 

Ye et al. 22 Heart CT U-Net

Gibson et al. 23 Multi-Organ CT V-Net

Z. Alom et al. 24 Multi-Organ Multi-modality RCNN (Reccurent CNN)

Wang et al. 25 Multi-Organ CT Mask R-CNN

Tang et al. 26 Liver CT R-CNN + DeepLab

Karimi et al. 27 Multi-Organ Multi-modality Pure Transformer

Wang et al. 28 Brain MRI Transformer (TransBTS)

Shen et al. 29 Kidney CT Transformer (COTRNet)

MRI: Magnetic Resonance Imaging; CT: Computed Tomography; CTA: Computed Tomography Angiography

RESULTS AND DISCUSSION
We can say after this study that each deep learning technique 

used for medical images segmentation that appears solves the 

problem of its predecessor, and that the pioneer is currently the 

vision transformers with attention mechanism. 

CONCLUSIONS
Our review introduces image segmentation with its approaches 

and focuses on deep learning methods where we summarize 

several architectures and the reasons for their emergence. We 

concluded that the leading choices for medical image 

segmentation are transformers with attentional mechanisms. 
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ABSTRACT: The renal time-activity (TAC) curve is a graphical representation of the distribution and elimination of a 
radiotracer within the kidneys over a period. It is an essential tool used in nuclear medicine and renal imaging to evaluate the 
function and blood flow of the kidneys. The importance of the renal time-activity curve lies in its ability to provide valuable 
information about renal function and to detect any anomalies or diseases affecting the kidneys. The first objective of this work is 
the experimental reconstruction of TACs from clinical data of dynamic scintigraphy and their comparison to those provided by 
scintigraphy machine in terms of main dynamic parameters. The second objective is the evaluation of some used mathematical 
models that fit experimental and clinical TACs based on the modelling of the physiological processes occurring within the kidneys. 
In this study, many renal TACs are compared, namely: TACs clinically acquired, TACs manually reconstructed based on region 
of interest (ROI) selection, TACs modelled with one-compartmental model using MatLab and Origin, and TACs fitted by a set 
of mathematical equations including mono-exponential fitting, Patlak, and bi-exponential fitting which have been taken as 
approximate solutions of the ordinary differential equation (ODE) describing the one -compartment model. Manual established
TACs of kidneys was found ROI dependent. Bi-exponential fitting function was correctly subtracted showing no vascular phase. 
Established TAC with MatLab one-compartment ODE based algorithm needs more adjustment and primary information to be 
accurate. In this work, TAC optimal extraction and modeling conditions and approaches were compared and discussed. Some of 
modelled TACs were able to provide detailed information on the kinetics and can be used to estimate quantitative parameters 
related to the kidney function. 
Keywords: TAC; Dynamic Renal Scintigraphy; Modeling; One-compartment model, Patlak model; Bi -exponential fit; Mono-
expensively fit.

INTRODUCTION
Dynamic Renal Scintigraphy (DRS) assumes a robust diagnostic 

tool. It provides a powerful array of capabilities for functional 

and molecular imaging in the kidney1. The diagnosis is primly 

based on the evaluation of several dynamic parameters extracted 

from the time activity curve (TAC), offering real-time insights 

into the biodistribution and pharmacokinetics of radiotracers 

within the renal system.2

To bolster the analysis of dynamic renal scintigraphy Data, TAC

modeling plays a pivotal role. It allows researchers and clinicians 

to extract valuable quantitative parameters related to renal 

physiology by mathematically representing the temporal uptake 

2023
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of radiotracers. Furthermore, mathematical models shed light on 

the extent to which tissue radioactivity measurements align with 

the intended physiological function and they enhance the data’s

signal-to-noise characteristic by eliminating additional 

variability introduced by external physiological factors 3.

Nevertheless, the path from raw dynamic data to quantifiable 

renal parameters is laden with complexities, influenced by a 

numerous factors. Among these, the selection of the region of 

interest (ROI) method emerges as a critical step in TAC 

extraction. Indeed, the selection method and the shape of ROI 

profoundly affects the resulting TAC.

The aim of this study is, therefore, to present a comparative 

analysis of dynamic parameters8 extracted from renal TACs 

clinically acquired, manually replotted based on two distinct

methods of ROI selection , modelled with one–compartmental 

model 4 using MatLab and Origin , fitted by a set of mathematical 

equations that include mono-exponential5,6 , patlak7 and bi-

exponential 5,6. These functions constitute approximate solutions 

of the ordinary differential equation (ODE) describing the one-

compartment model. An additional goal was to assess the rate 

elimination and absorption constants to gain insights into the 

kinetics of the renal system.

EXPERIMENTAL
Patient characteristics 

This retrospective study included a cohort of 12 anonymous 

patients (15-56 years) who underwent renal cortical imaging 

(using 99mTc-DMSA) and dynamic renal scintigraphy using 

99mTc-DTPA between 2021 and 2023 for various medical 

indications at the Centre of Scintigraphy Imaging, Dr. Ghodbane,

of Sétif.

Patient imaging and clinical TAC generation 

The imaging procedure was performed using a gamma camera, 
specifically the Discovery NM630 model. It involves capturing a 
series of 110 sequential frames, with shorter acquisition times 
during the first minute (one frame per second), followed by a 
slower rate of acquisition (1 frame per 15 seconds). This 
acquisition process continues for a total duration of 20 minutes 
in order to monitor the tracer uptake, distribution, and clearance 
in the kidneys.

Generating clinical TACs with Xeleris software involves selecting 

a ROI encompassing both kidneys in the image sum of 110 frames.
A larger ROI is preferred to ensure comprehensive coverage for 
functional and drainage assessment.

ROI Selection

Primary data processing encompasses the generation of regions 

of interest (ROI) corresponding to the right and left kidney areas, 

along with the background, on the 110 frames for each patient. 

Two methods for ROI selection and data extraction are applied:

Free hand method

MATLAB code was elaborated enabling the manual drawing of 
a region of interest (ROI) around the desired kidney on a single 
image (Fig.1). This drawn ROI was then saved as a mask and 
applied to all 110 images in the sequence. The same procedure 
was repeated to draw a C-shaped region of interest for the 
background. Subsequently, we extracted the mean grayscale 
values and standard deviations from each ROI, which represented 
the mean intensity levels within the selected areas.

Fig. 1: The determination of the ROI for the left kidney was 
performed through free-hand delineation, with a C-shaped 

background

Regular shape method

Using Fiji software, we drew two ellipses: one to encompass the 
ROI of the kidney and another to enclose the background area
(Fig.2). The ellipse shape was chosen for its ability to 
approximate the anatomical structure of the kidney and provide 
a standardized shape for analysis. After ROI section, the mean 
value and standard deviation are measured.

Fig. 2: The kidney ROIs are determined using Fiji software, 
employing an ellipse shape. It is important to note the presence of 
elliptical-shaped background regions positioned at the lateral edge 

of the kidney.
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Experimental TAC generation 

MatLab code was developed to export the ROI mean values and 
standard deviations of the kidney and the background for each 
method. Subsequently the net grayscale are calculated using the 
equation (Eq.1):= ( ) ( ),   (1)

Where GSNet is the net gray scale, GSmean(Kidney) is the mean 
grayscale value of kidney, and GSmean(Background) is the mean 
grayscale value of background9.

With this net gray scale, experimental TACs are generated and 
following dynamic parameters are determined:

Time to peak (TTP ou Tmax): the point at which the 

curve reaches its maximum value,

The 20min/3min ratio: the ratio between the curve’s

value at 20 minutes and its value at 3 minutes,

The 20min/peak ratio: the ratio between the curve’s 

value at 20 minutes and its maximum curve’s value. 

Renal TAC modeling: study on real case

Model selection

A one tissue compartmental model (Fig.3) is used, where the 
kidney is considered as a homogeneous singular body10.

The dynamic parameters derived from the analysis of the one-

compartmental model provide quantitative measurements of 

renal function, involving11,12 :

ka: The rate constant of absorption , which expresses the rate at 

which the radio tracer DTPA is incorporated in the kidney, is 

measured in s 1.

ke: The rate constant of elimination ,which expresses the rate at 
which the DTPA is excreted from the kidney, is measured in 
seconds. s 1.

Fig. 3: Schematic representation of the single compartmental tracer 
kinetic model.

Mathematical fitting equations

The fitting process is performed using MatLab and Origin
softwares by employing the following mathematical functions
(Table.1):

Table 1: Approximation mathematical functions 5,6,7

Method Mathematical function Description

Mono-exponential = C0(1 exp( ))
Approximation to the solution of one compartmental 

differential equation where C0 is the initial

concentration of radiotracer, is the uptake or 

absorption rate, and  is the elimination or 

clearance rate),

Patlak plot = × + × ( )     Graphical approach

Bi-exponential1
= × ( × )( ) × exp( ) exp( )+B

Described in the study by Devasia et al.5 using two 

rates constants (uptake or absorption rate) and  (elimination or clearance rate). A is the scaling

factor and B is the error.

Bi-exponential 2 = × (1 e ( )) × (exp( ) A represents the initial concentration of radiotracer 

For MatLab, the optimization process is facilitated using a 
suitable optimization function (such as “fminsearch()”) to 
minimize the sum of squared errors. MatLab employed the 
nelder-mead simplex as an optimization analysis.

For Origin, the nonlinear (NL) fit is used. To reach the optimum,
users can manually adjust the parameters y to minimize the 
difference between the model and the experimental data. This 
iterative manual adjustments process continues until the 
convergence is achieved and the user is satisfied with the fit.
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Origin employs the Levenberg-Marquardt algorithm.

Assessment of the modeling process

The evaluation of the modeling approach is done by the regression 
fit coefficient R2 that quantifies the degree of agreement between 
the model prediction and observed data. It is a measure on the 

goodness of the fit model13. In the context of regression, it is a 
statistical measure of how well the regression line approximates 
the experimental data .A higher R2 value approaching one (1)
indicates a better fit.

Another quantity used to assess the accuracy of the estimated 
parameters in our case is the standard deviation (SD) of the rate 
constants drawn from the used model. Additionally dynamic
parameters (Tmax, the 20min/3min ratio,..) are involved to 
improve the accuracy of modeled TACs when comparing it to 
clinical TAC. 

RESULTS AND DISCUSSION
Comparative evaluation of ROI selection methods

A comparative analysis of ROI determination methods (elliptical 

and free hand ROIs) is conducted. The assessment considered 

qualitative and quantitative aspects, with a focus on comparing 

the outcomes to clinical results.

Qualitative analysis

The accuracy and reliability of both ROI methods (Freehand and 

elliptical) are assessed in capturing kidney function dynamics.

Figure 4 illustrates the comparison of left renal TACs using 

Freehand and elliptical ROI methods for patient 1.
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Fig. 4: Comparison of left renal TAC using Freehand and elliptical 

ROI Methods for patient 1

Quantitative analysis

For the purpose of this comparison, the dynamic parameters are 

extracted for a set of patients from the clinical TACs captured 

during the study. Then parallel calculations are conducted for 

these parameters using both manual extraction through visual 

assessment and a regular shape method. This allowed the 

evaluation of the consistency and accuracy of the results obtained 

through different TAC extraction approaches. The following 

table shows the results for patient 1.

Table 2: Comparison of the main kinetic parameters of renal 

functions for the two used ROI selection methods 

Patient 1
Right kidney     Left kidney

CE FE RE CE FE RE

Tmax (min) 1.98 2 2.25 1.98
2.2

5
2.5

20mn/3mn ratio 0.49 0.51 0.59 0.54
0.6

1
0.83

20mn/peack ratio 053 0.49 0.45 0.58 0.6 0351

CE: Parameters were extracted from the clinical TAC displayed 

by Xeleris software.

FE: Parameters were extracted from experimental TAC using 

freehand,

RE: Parameters were extracted from experimental TAC using a 

regular shape.

T_max: According to the doctor, A T_max value within the 

normal range (<6 minutes) confirms the absence of fixation 

obstructions.

In summary, our findings strongly support the conclusion that the 

freehand segmentation method is better suited for the accurate 

and reliable extraction of kidney TACs in terms of qualitative 

adherence to the TAC shapes and quantitative consistency in 

determined dynamic parameters. This underscores the superiority 

of the freehand segmentation method for this particular 

application.

Renal TAC modeling

In this section, we present the results of our renal Time-Activity 

Curve (TAC) modeling study involving 12 patients using a one-

compartmental model with four fitting functions. These findings 
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offer valuable insights into estimating renal function parameters 

and demonstrate well the alignment of TAC modeling with 

clinical standards by focusing on both qualitative and 

quantitative assessments.

Qualitative assessment of TAC modeling

An assessment of concordance between the modeled TACs and 

empirical experimental data was conducted for both the left and 

right kidneys for all patients. In this work, Patient 1 was selected 

as a representative case to elucidate this comparative analysis 

using Origin and Matlab softwares. The results are indicated on 

figures 5-8 for different situations and used fitting softwares and 

functions.

Fig.5: Comparison of modeled and experimental left kidney Time-

Activity Curves for Patient 1 using Origin

 
Fig.6: Comparison of modeled and experimental right kidney Time-

Activity Curves for Patient 1 using Origin

    Fig.7: Comparison of modeled and experimental right kidney 

Time-Activity Curves for Patient 1 using Matlab.

Fig.8: Comparison of modeled and experimental left kidney Time-

Activity Curves for Patient 1 using Matlab

The third model (bi-exponential 1) implemented in MATLAB

closely approximated observed time-activity curves, particularly 

for normal renal function. The fourth model (bi-exponential 2) 

using Origin provided an acceptable yet incomplete

representation. The mono-exponential model was inadequate in 

capturing the phase of elimination observed in the experimental 

TAC, and the Patlak model's reliance on blood samples limited 

its clinical utility.

Quantitative assessment of TAC modeling

The quantitative assessment focused on two main methods:

1. Assessment of the elimination and absorption rate 

constants

The elimination and absorption rate constants are employed to

understand renal system kinetics. Functions 3 (MATLAB) and 4 

(Origin) exhibited notably smaller standard deviations than 

Functions 1 and 2, signifying greater modeling precision. The 

histograms of standard deviations of rate constants are utilized to

refine the analysis, offering a comprehensive view of modeling 

accuracy distribution (Figures 9 and 10).
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Fig.9: Histogram analysis of the Standard Deviation of rate 

constant K_abs for the left kidney was performed in 12 patients 

using Origin software.
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Fig.10: Histogram analysis of the Standard Deviation of the rate 

constant K_el for the right kidney was performed in 12 patients 

using Origin software

It’s important to note that the differences in results between 

Origin and MATLAB can be attributed to distinct optimization 

algorithms. Origin employs the Levenberg-Marquardt algorithm,

which combines the advantages of gradient descent and the 

Gauss-Newton method to optimize the fitting process while 

MATLAB utilizes the Nelder-Mead simplex algorithm, a 

derivative-free direct search method for optimization.

The study revealed that MATLAB's modeling improved with 

more parameters, capturing dynamics accurately. In contrast, 

Origin's limitations resulted in less precise TAC representations. 

This underscores the critical role of algorithm choice in 

optimizing modeling outcomes.

2. Evaluation of Dynamic Parameters

Parameters such as time to peak and specific ratios were extracted 

from clinical data to enhance the accuracy of modeled TACs 

derived from functions 3 and 4, which were deemed to provide

an acceptable representation.
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Fig.11: Histogram analysis of TTP for the left 

kidney for 12 patients
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Fig.12: Histogram analysis of 20/3 ratio for the left 

kidney for 12 patients
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12 patients



42 

The findings indicate that Function 3 demonstrates a closer 

match to the clinical TACs, suggesting a more acceptable 

representation of the renal dynamics for both right and left in

healthy subjects unlike the function 4. Aditionnally,in abnormal 

cases (patient 4, patient 6, patient 11, patient 12) the response of 

the model is not really satisfactory depending on dynamic 

parameters. Indeed, function 3 illustrates a higher R2 value 

approaching 1, which indicates that is the better fit (Fig.14).
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Fig.14: Histogram analysis of R2 for the left kidney for 12 

patients

CONCLUSIONS                                
This study focused on how selection of Regions of Interest

(ROIs) for renal Time Activity Curve (TAC) reconstruction can 

affect the output. The freehand method for ROI selection was 

found to provide reasonably acceptable results when comparing 

reconstructed renal TACs to clinical ones. The study also 

employed a one-compartmental model with four fitting 

functions by using MatLab and Origin software to model the 

TACs. Bi-exponential ( 3, 4) functions were identified as 

suitable representations of clinical renal TACs based on 

qualitative and quantitative assessment in terms of elimination 

and absorption rate constants, standard deviations , fitting 

regression parameter (R2), and the extracted clinical dynamic 

parameters . Typically, optimal modeling necessitates extended 

knowledge and accurate experimental and clinical data on 

scanning process, blood composition, and metabolism with an

intricate data processing. Deviations from the assumptions 

underlying these models can lead to misleading results.                      
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.

ABSTRACT: 3D printing technology has revolutionized various industries, including healthcare and radiotherapy. In 
radiotherapy, a 3D printed bolus refers to a custom-made device used to modify the radiation dose distribution during treatment. 
3D printed radiotherapy bolus technology must ensure customization, design flexibility, best material selection, dosimetric 
Accuracy, and rapid prototyping and manufacturing. The right design of such bolus enhances treatment precision, reduces side 
effects, and improves patient comfort during radiotherapy. The objective of this work is to use X-ray CT-scanning to ensure the 
conformity of some design parameters, namely: dimensions, Hounsfield unit (HU) of the used material, and right positioning of 
the 3D bolus. In this study, nose bolus was designed and 3D printed on the basis on real treatment data reproduced on virtual 
treatment case by considering “Rando” anthropomorphic phantom as physical patient. The manufactured bolus was placed on 
Rando to check its right positioning and final dimensions using X-ray CT-scan. The HU values were also verified for different 
filling rate values (5-100%) of the 3D printed material (Thermoplastic Polyurethane (TPU)). CT-scanning results demonstrate 
well that deviations between final dimensions of nose bolus and intended design dimensions do not exceed 5%. The bolus fit 
correctly the surface on which it will be placed. The HU value corresponding to 100% filling rate of the used material is 124±22 
HU. CT scanning, once the bolus is printed, allows obtaining the necessary information in order to check its accuracy and 
functionality. The undertaken verification ensure that the bolus is accurate, will be positioned correctly and will provide the 
desired dose distribution and coverage.
Keywords: Radiotherapy bolus; 3D printing; CT-scanning.

INTRODUCTION
Radiotherapy is a crucial treatment modality for cancer patients, 
involving the precise delivery of ionizing radiation to target 
tumor tissues while minimizing damage to surrounding healthy 
tissues. To achieve this precision, various tools and techniques 
are employed, and one such tool is the radiotherapy bolus. 
Radiotherapy boluses are materials placed on the patient's skin 
to modify the dose distribution of radiation beams, ensuring that 
the maximum dose is delivered to the tumor and sparing normal 
tissues.

In recent years, 3D printing technology has emerged as a 
promising method for customizing and fabricating patient-
specific radiotherapy boluses. 3D printed boluses can be tailored 
to fit the patient's anatomy and conform to the treatment area, 
which enhances treatment accuracy and patient comfort. 
However, ensuring the quality and efficacy of these 3D printed 
boluses is of paramount importance. This necessitates the need 
for thorough verification, particularly in terms of dimensions, 
positioning, and Hounsfield unit calibration using X-ray CT-
scanning.
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Accurate dimension verification is critical for ensuring that the 
3D printed bolus aligns precisely with the patient's treatment 
area. The use of X-ray CT-scanning allows for high-resolution 
imaging, enabling clinicians to assess the bolus's thickness and 
contour, which should match the treatment planning 
requirements. Discrepancies in dimensions can lead to 
underdosing or overdosing of radiation, potentially 
compromising treatment efficacy or causing unnecessary side 
effects. Hence, precise measurements and comparison with 
treatment planning data are vital.

Proper positioning of the 3D printed bolus is essential for 
consistent and effective radiotherapy. Through X-ray CT-
scanning, the bolus can be evaluated in situ, ensuring it 
accurately adheres to the patient's skin and maintains its intended 
position throughout the treatment course. Misalignment or 
movement of the bolus may result in deviations from the 
intended radiation dose distribution, making real-time 
positioning verification a crucial step in the treatment process.

Hounsfield units (HU) are a standard unit of measurement used 
in CT scanning to quantify the radiodensity of tissues and 
materials. Accurate HU calibration of the 3D printed bolus is 
essential to ensure proper dose calculations during treatment 
planning. X-ray CT-scanning is instrumental in this regard, as it 
allows for the assignment of appropriate HU values to the bolus 
material. This calibration enables the treatment planning system 
to accurately account for the bolus material when calculating 
radiation doses, improving the precision of the treatment.

The integration of 3D printing technology into radiotherapy 
bolus production offers a personalized and precise approach to 
cancer treatment. However, the use of X-ray CT-scanning for 
dimensions, positioning, and Hounsfield unit verification is 
crucial to guarantee the quality and effectiveness of these 
patient-specific boluses. By combining advanced technology 
and rigorous quality assurance measures, clinicians can optimize 
the benefits of 3D printed radiotherapy boluses, ensuring better 
outcomes for cancer patients while minimizing risks associated 
with radiation therapy1-2.

In this work, nose bolus was designed and 3D printed on the 
basis on real treatment data reproduced on virtual treatment case 
by considering “Rando” anthropomorphic phantom as physical 
patient. The manufactured bolus was placed on Rando to check 
its right positioning and final dimensions using X-ray CT-scan.
The HU values were also verified for different filling rate values 
(5-100%) of the 3D printed material (Thermoplastic 
Polyurethane (TPU)).

EXPERIMENTAL
In this study, nose bolus was designed and 3D printed on the 
basis on real treatment data reproduced on virtual treatment case 

by considering Rando anthropomorphic phantom as physical 
patient (Fig.1). The manufactured bolus was placed on Rando to 
check right positioning and final dimensions by X-ray CT-
scanning. The HU values were also verified for different filling 
rate values (5-100%) of the 3D printed material (Thermoplastic 
Polyurethane (TPU)) (Fig.2).

The objective of this work is to ensure that the dimensions of the 
bolus are accurate and suitable for the patient's treatment. The 
dimensional verification is done by measure the dimensions of 
the 3D-printed bolus using software and metrics tools. The 
comparison between the measured dimensions with the intended 
design dimensions allows to verify the 3D printing geometrical 
accuracy. CT-scan allows to check if the fabricated bolus 
matches the desired specifications and fits properly the receiving 
surface.

Fig.1: 3D printed noise bolus as placed on Rando phantom

Fig.2: Different samples of 3D printing material with different 
filling rates
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RESULTS AND DISCUSSION
CT-scanning results demonstrate well that deviations between 
final dimensions of nose bolus and intended design dimensions 
do not exceed 5% (bolus thickness and dimensions). The bolus 
fit correctly the surface on which it will be placed (Fig.3).

Fig.3: CT-scan of noise bolus as after positionning on Rando 
phantom

Fig.4 show the corresponding CT slice of the different TPU 3D 
printing material with different filling rates. The HU value (CT 
number) corresponding to 100% filling rate of the used material 
is 124±22 HU. HU value variation as function of filling rate is 
plotted in Fig.5. A linear dependence was observed for this 
variation. Thus, as a function of the treated case, it is possible to
decrease the filling in order to get suitable HU value that is most 
suitable for the dose compensation.    

Fig.4: CT-scan slice of different TPU 3D printing samples with 
different filling rates

Fig.5: HU value variation as function of filling rate

CONCLUSIONS
X-ray CT Scanning, once the bolus is printed, allows obtaining 
the necessary information on placement adequacy and effective 
Hounsfield unit value that are necessary to check its accuracy 
and functionality. The undertaken verification ensure that the 
bolus is accurate, will be positioned correctly and will provide 
the desired dose distribution and coverage.
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ABSTRACT: Radiation therapy (RT) has evolved considerably in recent decades with the Volumetric Modulated Arc 
Therapy as one advanced technique. RT’s main objective is to deliver a high conformal dose to the tumor while protecting 
organs at risk. It is a complex treatment due to the dynamics of the dose, the MLC and the gantry. The aim of this work is to 
evaluate the complexity of Volumetric Modulated Arc Therapy (VMAT) plans in order to predict the deliverability of those 
plans on the linac. We compared two complexity indexes; MIt, MD (from TPS) as means of predicting phantom-based 
measurement results for 21 treatments (11 H&N and 10 prostate plans) planned using TPS Monaco and clinically delivered on 
Elekta Infinity linac (GPR verified). MIt showed moderate to strong correlation to the local GPR with 3%3mm criterion with rs 
values of -0,618 (p=0,043) , -0,879 (p=0,001), -0,903 (p=0). However, MD didn’t correlate with the local GPR With rs values 
of -0.091 (p=0.79) and 0.103 (p=0.777). ROC analysis was also performed. MIt achieved 14,29% of FPR and 75% TPR with 
H&N plans (AUC=0,75), 25% FPR and 100% TPR with prostate plans (AUC=0,875). MD achieved 57% of FPR and 100% 
TPR with H&N plans (AUC=0,428), 63% FPR and 100% TPR with prostate plans (AUC=0,5). MIt seems to be a good 
complexity metrics. It can be used as modulation index for VMAT plans to predict delivery..
Keywords: VMAT; Monaco; Complexity index; Modulation; ROC analysis.

INTRODUCTION 
Volumetric modulated arc therapy (VMAT) is an advanced 
technique of radiotherapy because it is able to deliver greater 
dose conformity to target tissues over short delivery time and 
spares more normal tissues. However it is a very complex 
technique because the gantry, the multi leaf collimator (MLC) 
and the dose rate (DR) are dynamic during VMAT radiotherapy. 
Therefore, the patient is irradiated by rotational linear 
accelerator (linac) from different angles with beamlets of 
varying aperture shape and intensity, each rotation of linac is 
called an arc and one or more arcs might be used to treat 
patients1,2,3,12 (Fig. 1).

Complexity indices or metrics were mainly developed with the 
aim of predicting the patient specific quality assurance outcome. 
These metrics can be used to describe the degree of dose 
modulation and characterize both machine parameters and plan 
properties, including MLC position, gantry speed and dose rate 
variations2,7.

Modulated Index total (MIt): This index involves the variation 
in speed and acceleration of the MLC, the gantry speed and the 
dose rate6. The calculation of MIt is based on the concept of 
modulation index introduced by Webb5.

Modulation Degree (MD): Monaco TPS is the only TPS 
providing an advanced complexity metric and among the 
complexity metrics, it calculates the accuracy metrics. Monaco
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calculates the Modulation Degree (MD) which indicates the 
current total relative degree of modulation of all beams and 
sequences.

Fig. 1: VMAT delivery15

Overall, more complex plans should have a higher degree of 
modulation than simpler plan. In addition, Monaco offers 
segment shape optimization that smoothes and clusters 
segments, then optimizes beam weights and shapes in order to 
improve plan quality7.

Gamma index: The gamma index method compares the 
planned and the measured dose distribution by using the percent 
dose difference (DD) and the distance to agreement (DAT)13.

There are two types of gamma index methods:

A. The global gamma index analysis:

• Calculates the DDs relative to the maximum dose.

• Could underestimate the dose discrepancies in the low dose 
regions (because the DD is a percent value)14.

B. The local gamma index analysis:

• Calculates the DDs relative to the doses at each evaluated 
point.

• Could exaggerate the DDs in the low dose regions (because the 
DD is a percent value)14.

EXPERIMENTAL
In order to verify the deliverability of VMAT treatment plan on a
Linac, a specific patient quality control was performed. We used 
2 complexity metrics. Plans were calculated on Monaco TPS 
and then delivered on Linac and measured by MatrixX2D array 
detector and then measured and calculated 2D dose are 
evaluated using GPR method. We evaluated 2 complexity 
metrics whether to skip the patient quality control on a Linac. 
Our measurements took place at the ”Oncopole l’Espoir” clinic 
(Service of medical physics) .

Materials

1. Monaco TPS

Monaco is a comprehensive Treatment Planning System (TPS) 
for 3D, IMRT,VMAT and Stereotactic techniques (SRS/SBRT), 
which use the gold-standard Monte Carlo dose calculation 
algorithm XVMC to deliver highly accurate dose distributions 
with a suite of optimization tools. A collection of biological and
physical dose-based planning tools and templates simplify the 
planning process and allow for consistent results across 
organizations. At the same time, multi-criteria optimization 
(MCO) ensures critical organs are spared to the greatest possible

degree while maintaining target coverage (Fig 2).

Fig. 2: TPS Monaco interface (Oncopole Clinic)

2. Matrixx detector

MatriXX is a proven detector based on more than 1500 matrixx 
systems world-wide. The matriXX Evolution 2D ionization 
chamber array is developed by IBA dosimetry and it is associated 
with a multi-cub phantom that offers an efficient method to 
validate the dose according to the parameters reflecting those of 

the patient during the treatment8,10,11 (Fig3).

Fig. 3: MatriXX Evolution associated with multicub phantom 
(Oncopole clinic)

3. MyQA patient

The software provided by IBA is a QC solution that verifies the 
treatment plan by offering gamma-index verification and dose 
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distribution9 (Fig 4).

Fig. 4: MyQA patient interface (Oncopole clinic)

Methods

1. VMAT plans

Elekta infinity Linac equipped with 160 MLC was used to deliver 
21 treatments (10 H&N plans and 11 prostate plans). Those 
treatments were randomly selected and clinically approved 
plans generated in Monaco (Elekta) TPS version 5.11.3, using 
Monte carlo Vmat algorithm XVMC. Measurements were 
performed using the IBA MatriXX evolution ion chamber array 
associated with Mutlicub phantom. My QA software was used 
to record measurements and compare the measured dose plans 
to the Monaco calculated dose plans via gamma index analysis.

2. Complexity metrics

We used MIt and MD complexity metrics in order to evaluate 
the degree of Complexity of VMAT treatment plans. For MIt 
complexity metric calculation, we p
according to the Elekta manufacturer specifications the maximum 

the maximum DR is 720 MU/min. The CP in 
VMAT plans DICOM’s was defined at equiangular positions of 
the gantry at intervals of 2,0341 degree. We calculated the time 
between each CP in order to evaluate speed and acceleration of 
the mechanical parameters between CPs.

Time = 4.4380s is the maximum MU able to be delivered without 
slowing down the rotation of the gantry at a CP.

3. QA analysis

Gamma analysis was performed at 3% 3mm global, and 3% 3mm 
local with a tolerance of 95%. We used Python codes to calculate 
the complexity metric, the correlation coefficient and to plot the 
ROC and AUC curves. We determined the AUC for each ROC to 
indicate the performance of the classification using the trapezoidal 
numerical method.

RESULTS AND DISCUSSION

1. Gamma passing rates

Tables 1 and 2 describe the distribution of the GPR for Elekta 

infinity Linac using the 3% 3mm criterion (both global and 

local). For the global GPR all the plans would pass their QA 

because they have a GPR above the tolerance limit of 95%.

However, in the case of the local 3% 3mm the Linac delivered 6 

failing plans (2 prostate and 4 H&N) and 15 passing plans (8 

prostate and 7 H&N).

Table 1. Gamma passing rates for H&N plans

Table 2. Gamma passing rates for Prostate plans

2. Complexity metrics

In this study, we evaluated the MIt metric that considers the 

variation of the Linac mechanical parameters including MLC 

movements, GS variations and DR variations. We also 

evaluated its performance in predicting Vmat delivery. 

Patient

1 97,40% 91,90%

2 99,90% 98,80%

3 100% 99,70%

4 99,20% 96,20%

5 98,30% 94,10%

6 99,90% 97,60%

7 99,80% 98,30%

8 99,80% 97,40%

9 100% 97,70%

10 99,70% 97,50%

Patient (3%3mm) global (3%3mm) local

1 98,90% 97,20%

2 98,20% 94,50%

3 97,40% 90,10%

4 100% 99,10%

5 98,40% 96%

6 99% 95,80%

7 99,30% 96,70%

8 99,40% 96,50%

9 99,80% 88,60%

10 97,70% 94,80%

11 98,10% 95,10%
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Similarly, we evaluated the MD metric that considers the dose 

uncertainty to predict Vmat accuracy. Tables 3 and 4 show the 

MIt values for GPR 3%3mm local with f = 0.2, 0.5.. Tables 5

and 6 show the MD values.

Table 3. MIt metric for H&N plans                                       Table 4. MIt metric for Prostate plans

Table 5. MD metric for H&N plans Table 6. MD metric for Prostate plans

3. Spearman’s correlation

Tables 7A, 7B and 7C summarize the corresponding values of 
the Spearman’s rank coefficient. Overall, the MIt showed a 
strong correlation with gamma index (both f=0,2 and f=0,5) for 
the prostate plans, and for the H&N plans it showed a moderate 
correlation (f=0,2) and no correlation (f=0,5). The MD showed

no correlation with gamma index for both H&N and prostate 
plan. We tested the performance of MIt and MD metrics using 
the Spearman’s rank Correlation. The existence of correlations
between Monaco TPS and Elekta Linac used in our study 
suggests that extreme values of MIt and MD may indicate 
highly complex plans and correspond to larger disagreements 
between the calculated and measured dose distributions. 

Patient MIt f=0,2 MIt f=0,5

1 1,535 24,359

2 2,252 25,914

3 1,911 21,567

4 1,760 33,172

5 1,513 23,294

6 1,835 30,484

7 1,670 22,233

8 1,799 22,244

9 1,987 24,993

10 1,600 23,994

11 1,990 23,144

Patient MIt f=0,2 MIt f=0,5

1 1,852 28,913

2 1,469 22,867

3 1,224 19,247

4 2,009 26,654

5 1,789 25,101

6 1,634 24,355

7 1,539 23,512

8 1,699 24,580

9 1,438 22,937

10 1,827 26,909

Patient MD

1 3,62294

2 4,02956

3 4,24858

4 3,27817

5 5,15895

6 3,02008

7 5,43684

8 4,73448

9 4,48011

10 4,48405

11 5,735

Patient MD

1 3,45782

2 3,83126

3 3,42598

4 3,48602

5 3,66285

6 4,29711

7 3,71987

8 3,64117

9 3,42226

10 3,17798
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Therefore, we found a strong correlation of MIt to the GPRs 
with both f=0,2 and f=0,5 in the prostate plans. In the case of 
the H&N plans, we found a moderate correlation between the 
MIt and the GPRs with f=0,2and there was no correlation with 
f=0,5. MD metric showed no correlation for both H&N and 
prostate plans. High or low values of complexity metric can 
suggest a large disagreement between the calculated and the 
measured dose distribution. In fact, the MIt is able to 
discriminate between plans that fail or pass and it depends on 
the TPS.

Table 7. Spearman’s rank correlation. A: for H&N plans (MIt), B:
for prostate plans (MIt) and C: for H&N and prostate plans (MD)

(A)

(B)

(C)

4. ROC analysis

The ROC curves are depicted in figures 5-10. For H&N plans, 
MIt achieved 75% TPR and 14,29% FPR with f=0,2, 75% TPR 
and 43% FPR with f=0,5 and MD achieved 100% TPR and 57% 
FPR. For the prostate Plans, MIt achieved 100% TPR with 
f=0,2 and f=0,5, 25% FPR with f=0,2 andF=0,5 and MD 
achieved 100% TPR and 63% FPR. All TPR, FPR, AUC and
ROC are summarized in tables 8, 9, 10 and 11. We used the 
ROC curves and the AUC in order to quantify the sensitivity 
and the specificity of pre-treatment VMAT quality assurance 
technique delivery Errors. In our study, MIt yielded AUC 
between 0,5 and 0,875 using a local 3%3mm Criterion with 95% 
tolerance limit. The MIt yielded 14,29% FPR and 75% TPR 
(f=0,2) for H&N plans. Whereas, 25% FPR and 100% TPR for 
the prostate plans. Furthermore, the best threshold values that 

correspond to a law FPR and high TPR are 1,836 for the H&N 
plans and 1,7 for the prostate plans.

Table 8. ROC analysis for H&N plans (MIt)

Table 9. ROC analysis for prostate plans ( MIt)

Table 10. ROC analysis for H&N plans (MD)

Table 11. ROC analysis for Prostate plans (MD)

                                             

3/3local MIt f=0,2 MIt f=0,5

-0,618 0,118

p 0,043 0,729

3/3local MIt f=0,2 MIt f=0,5

-0,879 -0,903

p 0,0013 0,000

3/3local MD(H&N) MD(prostate)

-0.091 0.103

p 0.79 0.777

3/3local MIt f=0,2 MIt f=0,5

AUC 0,8125 0,875

FPR 25% 25%

TPR 100% 100%

Best threshold 1,7 24,581

G-mean 0,866 0,866

3/3local MIt f=0,2 MIt f=0,5

AUC 0,75 0,5

FPR 14,29% 43%

TPR 75% 75%

Best threshold 1,836 23,295

G-mean 0,8018 0,6547

3/3local MIt f=0,2

AUC 0,428

FPR 57%

TPR 100%

Best threshold 3,623

G-mean 0,6547

3/3local MIt f=0,2

AUC 0.5

FPR 63%

TPR 100%

Best threshold 3.426

G-mean 0.6124
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Fig. 5: ROC curve for H&N plans MIt f=0.2

Fig. 6: ROC curve for H&N plans MIt f=0.5
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Fig. 7: ROC curve for prostate plans MIt f=0.2

Fig. 8. ROC curve for prostate plans MIt f=0.5.
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Fig. 9: ROC curve for H&N plans MD

Fig. 10. ROC curve for prostate plans MD
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CONCLUSIONS
In this study, we evaluated the complexity of Vmat plans using 
“two-complexity metrics” the MIt and the MD.

On one hand, the MIt is an index that verifies the mechanical 
parts of Linac’s uncertainty. This index shows a strong 
correlation with gamma index for the prostate plans (for both 
f=0.2 and f=0.5) and in the case of H&N plans it correlates just
for f=0.2. On the other hand, the MD is an index that verifies the 
dose uncertainty and the only TPS that calculates this index is 
the Monaco TPS. According to our results, this index does not 
correlate with the GPR.

MIt can be used as modulation index for VMAT plans to predict 
delivery. In fact, using the MIt threshold, we can predict if a plan 
will pass or fail.

In the future, we plan to develop new complexity indices to 
control both mechanical parts and dose calculation uncertainties 
that correlate with GPR. We also aim to implement the Artificial 
Intelligence AI that is a gold standard method in predication.
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Automatic Detection of Anatomical Landmarks for Image 

Registration in Radiotherapy
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ABSTRACT: Anatomical landmark correspondence in Radiation Therapy imaging provides extra guidance information 
for the medical imaging registration. However, manual landmark identification is intensive and time consuming. Therefore, 
developing a deep learning approach to automatically detect landmark correspondence in pairs of two-dimensional (2D) images 
of Cone-Beam CT (CBCT) and planning-CT (pCT) is extremely important. Our method consists of a U-net-based Convolutional 
Neural Network (CNN) that has been trained to recognize points in both image modalities and anticipate matching probabilities 
for landmark pairings. We trained our method using 58 scans of 2D-axial in the pelvic area. In this study, we propose an effective 
approach for automatic landmark detection in the field of radiotherapy using deep learning model U-Net, focusing on the precise 
spatial localization of these landmarks in pairs of corresponding CT and CBCT images of the pelvic area used for image 
registration.  The first step was to train our proposed models based on U-net architecture on dataset of 58 scans of 2D-axial in 
the pelvic area, each scan ranges from 140 to 160 CT slices and 86 to 88 slices of CBCTs with a pre-annotated landmark 
coordinates realized by medical experts. The next step was to evaluate the obtained models in terms of accuracy and loss metrics.
The training models showed promising results in terms of landmark predictions; in some scenarios, it surpasses the ground truth 
in terms of landmark distribution. With a motivation to contribute to the process of automatic landmark detection, eventually, 
registration methods of medical images, we employed a U-Net deep learning approach, which plays a significant role in image 
segmentation, for the detection and matching of landmarks in two different image pair modalities. To the best of our knowledge, 
this is the first approach that learns landmark locations between the CT and the CBCT images using U-net. Our proposed approach 
of model learning based on the U-net architecture requires a pre-annotation from experts regarding the landmark coordinates 
before the learning process. The appearance of landmarks in the learning process not only has given more point, but also, it 
precisely predicts landmarks spatial positions. 
Keywords: Image registration; Landmark detection; Deep learning.

INTRODUCTION
Digital images have a profound impact on science development 
and many activities would not have been possible without them.
It is an interdisciplinary subject that spans astrophysics to 
medical imaging, among other subjects. Medical imaging has 
been introduced as one of the most important sub-fields in 

scientific imaging, with Radiation Therapy (RT) imaging at the
top of the pyramid.

Medical image processing applications, in general, are related to: 
image registration, image segmentation, image enhancement 
and restoration1. Among these procedures and analysis, we are 
shedding light on the process of image registration (IR) in 

2023
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radiation therapy. This work discusses the techniques and 
applications of IR, using two distinctive RT image modalities;
the planning-CT (pCT) and the in-room CT, also called cone-
beam CT (CBCT). Image registration exists in almost every 
software system that does any sorts of image acquisition in 
radiotherapy, additionally, most treatment planning systems 
(TPS) support some form of image registration to allow the use 
of multimodality data to assist in target volume (TV) and organs-
at-risque (OAR) delineation2. Treatment delivery systems 
perform registration between the planning-CTs and the CBCT 
images during the treatment to assist patient positioning or to 
characterize disease. Advanced applications are beginning to 
support daily dose assessment and enable ART to use image 
registration to delineate contours and accumulate dose between 
image data to provide updated or live estimations of the 
challenging anatomical changes, crucial for an accurate 
treatment.

In the literature, many techniques and algorithms were 
developed throughout the history of medical image registration, 
the most important ones are based on intensity, feature and 
iterative IRs, dating as far as 19633. In 2012, Alex-Net4

introduced state-of-the-art performance in IR by applying deep 
learning (DL) known today as artificial Intelligence (AI) 
combined with ML algorithms. DL belongs to a class of ML and
consists of massive multilayer networks of artificial neurons that 
can automatically discover useful features, given large amounts 
of unlabeled or labeled data. DL was successfully applied to the 
most common convolutional algorithms such as iterative and 
intensity-based registration algorithms. Performance was 
outstanding4-5 however, not enough. Further demands for higher 
performances and faster registration methods motivated the 
development of many deep learning-based algorithms and 
methods. During this process, many properties of DL were 
upgraded, such as network architectures (CNN, RL, GAN etc.), 
training processes (supervised, unsupervised etc.). Although 
there are many architectures of CNN available in literature, one 
important approach of neural networks is the U-Net architecture, 
applied in this work to train our model to detect anatomical
landmarks.

Landmarks are usually understood as characteristic points of the 
image domain, consequently, landmark correspondences as 
point correspondences6. The process of detecting these 
landmarks is crucial in quantifying any medical image analysis. 
Manual tracing of anatomical landmarks is tedious and prone to 
human error7, thereby, justifying the need to develop automated 
methods for anatomical landmark identification8. We used the U-
net architecture to train our model to predict points based on a 
given expert-based landmark coordinates for both CBCT and CT
images. Heat-map (HM) is employed to locate the predicted 
landmarks. The approach involves the concurrent regression of 
heat-maps for landmarks rather than focusing solely on absolute 

landmark coordinates.

EXPERIMENTAL
Dataset Description 

In this work, the studies were performed on data-sets of 58 patients 
of different ages containing their pCT and CBCT pelvic images. 
These patients were treated at the Beaumont Proton Center and 
have been selected for a Beaumont Research Institute Institutional 
Review Board approved retrospective study (2014-326). Each 
patient received a planning CT on a 16-slice Philips Brilliance Big 
Bore CT scanner (Philips NA Corp, Andover, MA) covering the 
entire anatomic region and utilizing an immobilization system (see 
Figure 1). Each patient had CBCT images acquired for daily image 
guidance on the Proteus ONE Proton therapy machine (Ion Beam 
Applications S.A., Belgium). The CBCT images were 768 × 768 
× 110 voxel with voxel size ranging from (0.6406 × 0.6406) to 
(0.5176 × 0.5176) mm2 and 2.5 mm slice thickness for all cases. 
The machine iso-center is located at the center of the CBCT 
reconstruction image volume. The dataset was enhanced by Excel 
files, containing (x, y, z) landmark coordinates for each 
corresponding image in both pCT and CBCT modalities and for 
all patients. 

Fig. 1: Assisted expert manual point selection application interface 

showing sample data. The Image on the left panel (top and bottom) 

shows cone beam computed tomography (CBCT) of the target 

image and image on the right panel (top and bottom) shows the 

planning CT image, which is the reference image 6

Dataset Pre-Processing   

Normalization is a crucial pre-processing technique in machine 
learning, aimed at standardizing the scale of numeric attributes. Its 
purpose is to rescale real-valued attributes into a uniform range, 
commonly between 0 and 1. This adjustment mitigates the impact 
of varying feature scales during model training, leading to more 
effective convergence and ultimately improving model accuracy. 
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For the sake of our work, the objective here is to establish 
consistent scale for pixel values. Diverse methods exist including 
min-max and z-score normalizations9. In this work min-max 
normalization is used:= ( ) , (1)

where: x is the original data point. xmin is the minimum value of 

the data set. xmax is the maximum value of the data set. X

normalized is the normalized value of x in the new range. By 

applying this technique, the lowest pixel value (corresponding to 

"Air" in this instance) is set to 0, while the highest value (HUmax, 

initially at 400) is scaled to 1. All other pixel values are 

proportionally adjusted to fall between 0 and 1, maintaining their 

relative relationships intact. For any given pixel value: 

= ( )( ) = (2)

Shifting the focus to image resizing, which is a crucial pre-

processing step, the context involves several constraints including 

hardware limitations10. The original pCT and CBCT images were 

captured with dimensions of 512x512 pixels. Given the hardware 

constraints, a pragmatic solution was to halve the dimensions by 

dividing them by a factor of 2. This maneuver resulted in images 

of 256x256 pixels, offering a balanced compromise between 

image quality and the imposed limitations. Mathematically, if Po 

represents the pixel value at the row io and column jo in the 

original image, and Pn represents the pixel value at row “in” and

column “jn” in the resized image. The average values of the four 

pixels in the original image that correspond to the 2x2 block 

surrounding the pixel in the resized image operation can be 

expressed as: = ( , ) + ( , ) + ( , ) +
( , )     (3) 

Probability map (Heat map) creation

Investigating the concept introduced by Pfister et al11, the 

approach involves the concurrent regression of heat-maps for 

landmarks rather than focusing solely on absolute landmark 

coordinates. In a similar manner, heat-maps are depicted as 

images in which Gaussian distributions are centered at the 

respective landmark positions. Moreover, generating heat-maps 

for landmark detection involves creating a visual representation 

of the likelihood of landmarks being present in different parts of 

an image, which is achieved using a Gaussian distribution. The 

Gaussian curve is defined by parameters such as amplitude (peak 

intensity), mean (centre), and standard deviations (spread) along 

the x and y axes. In the context of generating a Gaussian heat-

map for landmark detection, the distribution is used to simulate 

the heat or intensity around a landmark point. The 2D Gaussian 

distribution is defined as: 

gauss( , ) = ( )
(4)

Where: x, y are coordinates in 2D space. A is the amplitude or 

Train, Validation & Test sets

This step is important in training any DL model12. For training 

and testing purposes of our model, our data have been split into 

three distinct dataset (i) the training set is the set of data that is 

used to train and make the model learn the hidden 

features/patterns in the data, the training set should have a 

diversified set of inputs so that the model is trained in all 

scenarios and can predict any unseen data sample that may 

appear in the future; (ii) The validation set is a set of data, that is 

used to validate our model performance during training. This 

validation process gives information that helps us tune the 

model’s hyper-parameters and configurations; (iii) The test set is 

a separate set of data used to test the model after completing the 

training. This provides an unbiased final model performance 

metric in terms of accuracy and precision.  

In the scope of our research, we initially conducted a segregation 

process where 14 patients out of 58 forming our dataset, will be 

reserved for test set. This is done to avoid biased estimations and 

the necessity to accommodate certain hardware limitations and

also for optimal utilization. This partitioning leaves us with a 

remaining set of 44 patients. Within this framework, we have 

formulated a scenario that encompasses a training-validation 

split of 80% and 20%, respectively.

Model Architecture 

Our U-net architecture consists of an encoding path and a 
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decoding path13. The coding path follows the typical architecture 

of a convolutional network. It consists of the repeated 

application of two 3x3 convolutions, each followed by a 2x2 

max pooling operation with stride 2 for down-sampling. Every 

step in the decoding path consists of an up-sampling of the 

feature map followed by a 2x2 convolution (“up-convolution”) 

that halves the number of feature channels, a concatenation with 

the correspondingly cropped feature map from the decoding path, 

and two 3x3 convolutions, each followed by a ReLU. At the final 

layer a 1x1 convolution is used to map each 64-component 

feature vector to the desired number of classes. In total, the 

network has 23 convolutional layers. Fig.2 describes the U-net 

architecture (example for 32x32 pixels in the lowest resolution). 

Each blue box corresponds to a multi-channel feature map. The 

number of channels is denoted on top of the box. The x-y-size is 

provided at the lower left edge of the box. White boxes represent 

copied feature maps, the arrows denote the different operations. 

Fig.2 illustrates the proposed architecture, and Table 1

summarizes encoding and decoding paths. 

Table 1. Proposed U-net architecture's construction and flow

Name Kernel size Feature map input Feature map output

Encoding path

2 x conv Layer 3 (256, 256, 1) (256, 256, 16)

Max-Pooling 2 2 (256, 256, 16) (128, 128, 16)

2 x conv Layer 3 (128, 128, 16) (128, 128, 32)

Max-Pooling 2 2 (128, 128, 32) (64, 64, 32)

2 x conv Layer 3 (64, 64, 32) (64, 64, 64)

Max-Pooling 2 2 (64, 64, 64) (32, 32, 64)

2 x conv Layer 3 (32, 32, 64) (32, 32, 128)

Max-Pooling 2 2 (32, 32, 128) (16, 16, 128)

2 x conv Layer 3 (16, 16, 128) (16, 16, 256)

Decoding Path

Name Kernel size Feature map input Feature map output

Con2D Transpose and 2 (16, 16, 256) (32, 32, 256)

Max-Pooling 2 3 (32, 32, 256) (32, 32, 128)

Con2D Transpose and 2 (32, 32, 128) (64, 64, 128)

Max-Pooling 2 3 (64, 64, 128) (64, 64, 64)

Con2D Transpose and 2 (64, 64, 64) (128, 128, 64)

Max-Pooling 2 3 (128, 128, 64) (128, 128, 32)

Con2D Transpose and 2 (128, 128, 32) (256, 256, 32)

Max-Pooling 2 3 (256, 256, 32) (256, 256, 16)

2 x conv Layer 1 (256, 256, 16) (256, 256, 1)
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Fig. 2: Proposed U-net architecture

Performance Evaluation 

The evaluation of machine learning algorithms is an essential 
part of any model training. Evaluation metrics explain the 
performance of a model and an important aspect of evaluation 
metrics is their capability to discriminate among model results. 
There are different types of evaluation metrics available, we will 
be focusing on the following metrics:

Accuracy:

Accuracy is the ratio of number of correct predictions to the total 
number of input samples. It works well only if there are equal 
number of samples belonging to each:  Accuracy(ACC) = × 100%               (5)

Where:

Number of Correct Predictions corresponds to the count of 
predictions made by the model that match the true values. 

Total Number of Predictions corresponds to the total count of 
predictions made by the model.

Logarithmic Loss:

Non-Logarithmic Loss or Log Loss, works by penalizing the 
false classifications. It works well for multi-class classification. 
When working with Log Loss, the classifier must assign 
probability to each class for all the samples. Suppose, there are 
N samples belonging to M classes, then the Log Loss is 
calculated as below:

= ( )       (6)

Where: 

N is the number of samples. yik is the indicator (0 or 1) whether 
class k is the true class for sample i. pik is the predicted 
probability of class k for sample i.

Mean Squared Error:

The Mean Squared Error (MSE) or Mean Squared Deviation 
(MSD) of an estimator measures the average of error squares i.e., 
the average squared difference between the estimated values and 
true value. It is a risk function, corresponding to the expected 
value of the squared error loss. It is always non-negative and 
values close to zero are better.( ) = ( )       (7)

Where:

N is the number of samples. yi is the true target value for sample . is the predicted target value for sample i.

RESULTS AND DISCUSSION
Once the development process is accurately designed and the 

previous conditions fulfilled, running the training code begins. 

For each given hyper-parameter, 100 and 150 Epochs, 64 and 80 

batch-sizes (see Table 2) and by setting the call-back (early 

stopping) parameter for 20 repetitive MSE values, the training 
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results of both CBCT and pCT models are given in Figure 3 and 

Figure 4 respectively.  

Table 2. Hyper-parameters tuning for pCT and CBCT training 

models

Modality Hyper-parameters
Number of 

parameters

Epoch Batch size

CBCT

100

150

100

150

64

64

80

80

1,940,817

- 

- 

- 

CT

100

150

100

150

64

64

80

80

1,940,817

- 

- 

- 

We first report that the landmark detection by the proposed U-

net architecture has successfully learned predicting landmark 

correspondences of both CBCT and CT models under the 

inserted expert-based landmarks. From the figures above, we can 

state that: by fixing the EPOCH and varying the Batch-size, the 

more the batch-size is higher, the more landmarks are detected. 

However, by fixing the batch-size and varying the EPOCHs 

values, we clearly observe a precision in landmarks distribution 

positions, hence, the more EPOCHs are, the better the precision.

The pCT model has shown similar results concerning landmark 

detection success by the U-net. Furthermore, this resemblance is 

not only confined to the landmark detection, it also shows similar 

results when tuning the hyper-parameters. We further report the 

change of loss function values achieved by the two models 

training with entire images. Training and test figures indicate 

almost no over-fitting or under-fitting issue for both models. We 

also state that, the time of the training is within 57 minutes for 

100 EPOCHs and 114 minutes for 150 EPOCHs on a Google 

Colab GPU.

For a qualitative evaluation, we visually compared the model 

landmarks with the pre-defined expert-based landmarks. These 

landmarks will be shown and displayed on the corresponding 

images, we selected four random pairs of images. Figures 5 and 

6 demonstrate these samples clearly. The CNN model 

successfully identifies landmarks in both CT and CBCT images. 

Notably, the model surpasses expert annotations in certain 

instances by correctly identifying missing landmarks. 

Figure 3: Results of the proposed CBCT training model of U-net architecture set on EPOCH=100 and 150& Batch-Size=64 and 80 where A) 

Original image B) Expert-based landmark C) Model Landmarks
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Figure 4: Results of the proposed CT training model of U-net architecture set on EPOCH=100 and 150& Batch-Size=64 and 80 where A) 

Original image B) Expert-based landmark C) Model Landmarks

Figure 5: Illustrative representation of CBCT landmarks between pair of slices, red dotes represents the predicated landmarks and the white 

dotes represent the expert-based landmarks
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Figure 6: Illustrative representation of CT landmarks between pair of slices, blue dotes represents the predicated landmarks and the white 

dotes represent the expert-based landmarks

CONCLUSIONS
With a motivation to provide additional guidance information for 

automatic landmark detection and eventually, registration 

methods of medical images, we developed a deep learning 

approach for the detection of landmarks in two different image 

paired modalities. To the best of our knowledge, this is the first 

approach that trains landmark locations between the pCT and the 

CBCT images of the pelvic area using U-net. Our proposed 

approach of model learning based on the U-net architecture 

requires a pre-annotation from experts regarding the landmark 

coordinates before the learning process. The appearance of 

landmarks in the learning process has not only given more points 

but also precisely predicted landmarks spatial positions with 

high accuracy. These conditions are related to the architecture’s

hyper-parameters, we observed that, by establishing high tuning 

values, the performance is highly upgraded. Results are

encouraging; however, the current method is designed for 2D 

images, and thus ignores the likelihood of out-of-plane 

correspondences in pCT and CBCT scans. As a result, extending 

the methodology to 3D is critical in order to speculate on the 

benefits of supplying extra guidance information to the new 

techniques on DIR systems. In addition, small number of the 

results showed predicted landmarks out of context, i.e. false 

predictions. Further, in contrast to the traditional unsupervised 

methods for landmark detection in medical imaging, the 

proposed approach requires pre- and post-processing steps and 

has more hyper-parameters, Finally, our approach can be viewed 

as a potential method to add to the radiation therapy.
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ABSTRACT: The increasing development of machine learning (ML) and the significant progress it achieved draw 
attention towards coping with the medical field. Colorectal cancer (CRC) is one of the most common cancers among humans, its 
diagnosis is made through the visual analysis of tissue samples; artificial intelligence (AI) can automate this analysis based on 
histological images generated from different tissue samples. CRC is considered an abnormal growth of cells that compose a 
tumor; being able to differentiate normal cells from tumor cells is still a challenging problem. In this paper we aim to enhance 
this process by proposing a deep learning (DL) based method that is extremely accurate and reliable despite several limitations.
Our method is a DL application that is based on Convolutional Neural Networks (CNN) in order to classify different classes of 
tissues into cancerous and non-cancerous cells based on histological images token from two different datasets. Due to the 
sensitivity of the problem, the performance of our work will be estimated using general accuracy, precision, recall and F-score 
metrics since they ensure more credibility to the classification results. Our model has been tested and evaluated under two datasets, 
the first one was collected from CRC-5000 datasets containing more than 10000 images (with data augmentation) of cancerous 
and non-cancerous tissues, our model achieved promising results with an overall accuracy of 94%, precision= 100%, recall= 100% 
and F1-score= 100%. The second dataset is Kather-CRC-2016, it contains more than 5000 images (without data augmentation) 
belonging to eight different tissue categories; our model achieved high performance for the class Tumor with precision= 96%, 
recall= 99% and F1-score= 98% and overcome state of the art methods.
Keywords: Deep learning; Colorectal Cancer; Histological Images; CNN; Digital Pathology.

INTRODUCTION
Colorectal cancer is considered as the fourth occurring cancer in 
the world11, it is defined as an uncontrolled cell division in the 
colon and the rectum regions due to mutations in the cells’genes, 
this mass of cells form polyps, not all polyps are cancerous but 
over time they can develop to Colorectal Cancer. Usually the 
manual procedures of detecting CRC is by taking a biopsy from 
the existing polyps, and then study its composition using 
microscopes, the images resulting from this phase are called 
histological images, they present different types of existing cells 

in the studied tissue and analyzed by pathologists. 

Even though CRC is the third leading cancer type to cause 
death11, early detection plays a key role in saving lives and can 
increase the survival rate by up to nearly 90% 14. The analysis of 
histological images through advanced ML techniques resulted 
better and more efficient diagnosis. Recent studies show that ML 
techniques achieved significant process in the medical field such 
as: radiologic diagnosis1, disease diagnosis through gross and 
microscopic images2 tumor detection, classification, especially 
for breast3, brain4, lung5, gastric6, ovarian, and prostate7,8 cancers. 
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In addition, there have been various attempts to apply Artificial 
Intelligence (AI) techniques in the pathologic image analysis of 
CRC.

A traditional classification system consists of three phases, 
namely image pre-processing, feature extraction and 
classification; an automated system would let the machine learns 
the optimal features by its own instead of involving human 
beings. The most successful ML models are the ones based on 
Deep Learning (DL) especially Convolutional Neural Networks 
(CNN), they can automatically extract features from raw input 
images and this represents the main reason and success factor 
that makes it more efficient and reliable.

CNN are a type of Neural Networks where we alternatively use 
two types of layers: convolutional and pooling layers, and the 
end a fully connected layer that connects to the output layer. The 
main difference between CNN and regular neural networks is 
that CNN uses multiple hidden layers instead of just one.

In this paper we present a DL method based on CNN in order to 
classify histological images token from two datasets into 
cancerous and non cancerous tissue cells, the evaluation is done 
using different metrics in order to ensure the efficiency of the 
model; our method shows promising results compared to state of 
the art methods 12, 13.

The rest of the paper is organized as next: section 2 talks about 
the experimental method, section 3 shows the obtained results 
and their discussions then a conclusion is given at the end.

EXPERIMENTAL
In this paper, we proposed a model based on CNN due to its 
efficiency in the problem of image classification. Our model 
consists of the use of three convolutional layer blocks followed 
by max pooling layer each, then a fully connected layer and at 
the end an output layer that contains the number of output classes. 
The general architecture of our model is shown in Figure 1.

Our model is tested under two different datasets, the first one is 
collected from the CRC-5000 dataset; the original database9

contains 25000 images of lung and colon cancer disease; we 
collected 10000 images divided equally into two classes: 
cancerous colon cells and non cancerous colon cells each class 
contains 5000 images of size 768*768 and in jpeg format.

The second dataset is collected from the Kather-CRC-2016
database10; it contains 5000 images divided into eight different 
tissue classes: empty, adipose, mucosa, debris, lympho, complex, 
stroma and tumor.

Our model was trained for 30 epochs; batch size was set to 64 for 
the first dataset and 32 for the second; we used data augmentation 
techniques for both datasets. Dropout and Batch normalization 
layers were added to improve the performance of the model.

Fig. 1: The General Architecture of the Model

RESULTS AND DISCUSSION
In this work, we conducted a study based on CNN architecture; 
it was tested under two datasets and evaluated using different 
metrics in order to prove its efficiency and reliability. In addition 
to model general Accuracy which is the main metric for almost
each study we also used Precision, Recall and F1-Score.

Precision measures the correctness of positive predictions, while 
recall measures the completeness of positive predictions,
Precision can be seen as a measure of quality, and recall as a 
measure of quantity. Precision measures the proportion of 
correctly predicted positive instances. Accuracy assesses the 
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overall correctness of predictions. Recall evaluates the 
proportion of actual positive instances correctly identified by the 
model.

The F1-Score combines the Precision and Recall metrics, the 
higher the F1-Score is the more reliable the model is.

For the first dataset (CRC-5000) our model achieved an overall 
accuracy of 94% with precision= 100%, recall= 100% and F1-
score= 100%. Classification report for this dataset is shown in 
Table 1. You can find the accuracy curve in figure 2.

Table 1. Classification report for the CRC-5000 Database

Fig. 2: Model Accuracy Curve for the CRC-5000 Database

For the second dataset (Kather-CRC-2016) our model achieved 
high performance for the class Tumour with precision= 96%, 
recall= 99% and F1-score= 98%. The classification report for 
this dataset is shown in Table 2.

Table 2. Classification Report for the Kather-CRC-2016 Database

Tissue Classes Precision Recall F1-Score

Empty 0.80 0.89 0.84

Adipose 0.61 0.77 0.68

Mucosa 0.82 0.60 0.69

Debris 0.90 0.87 0.89

Lympho 0.70 0.62 0.66

Complex 0.81 0.78 0.80

Stroma 0.90 0.95 0.93

Tumor 0.96 0.99 0.98

Table 3 presents a comparison between state-of-art methods and 
our proposed method. Results shown clearly the performances 
of our proposed method. 

Table 3. Comparison of State of the Art Methods and the Proposed 
Model

CONCLUSIONS
In this paper we presented a novel architecture based on CNN in 
order to classify histological images into cancerous and non-
cancerous cells, we tested our model under two different datasets 
and evaluated it using different metrics; our model achieved 
significant results and proved that machine learning can be a 
leading technique for medical classification problems.
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ABSTRACT: Nowadays, several authors have investigated electron interaction with molecules constituting the 
deoxyribonucleic acid (DNA). It is known that all cellular molecules and constituents can be affected by radiation. The aim of 
these different studies was to understand the various processes leading to the radiation damages of a living cell. Knowing that 
today, it is clearly recognized that the carrier of genetic information (DNA) is the sensitive entity of an irradiated organism. The 
damage suffered by this molecule influences the functioning cellular such that in the normal functioning of the living cell. 
Particularly after exposure, some radiation-induced DNA damage can lead to mutations of the cells. In some cases, they persist 
and can promote the emergence of cancers after few years. It therefore appears necessary to fully understand the biological 
mechanisms leading to cell death. Thus, we propose to calculate numerically, at low and high energies, the differential and integral 
cross sections of the electrons scattered elastically by biomolecular targets that constitute the deoxyribonucleic acid and ribonucleic 
acid. Our choice is, particularly, focused on the tetrahydrofuran (THF, C4H8O) molecule, since it is similar to the sugar of DNA 
and RNA. The calculation method developed is based on the model of independent atoms, taking into account the various 
interaction potentials at short- and long-range between the biomolecular and the incident radiation as well as the multiple scattering 
effects. The doubly differential cross sections have been calculated as a function of the scattering angles for many incident energies, 
while the integral cross sections are calculated for the energies ranging from 20eV to 100keV. The effects of the various interaction 
potentials are analyzed.  In addition, the obtained results are discussed and compared to the experimental data available in the 
literature and very good agreements are found.
Keywords: Electrons elastic scattering; differential and integral cross-sections; THF; DNA; Independent atom model.

INTRODUCTION
The radiation-matter interaction is involved in a wide 
variety of research fields such as plasma physics1,
astrophysics2, or even radiobiology3. Indeed, when the 
radiation penetrates the matter, it modifies certain 
properties of the irradiated matter. In the specific case of 
biological matter, this alteration, when not corrected, can 
lead to the appearance of chromosomal aberrations that 
can lead to mutations, cancers or cell death. Paradoxically, 
the aim of irradiation is to destroy cancer cells while 

preserving as much as possible healthy tissue and 
surrounding organs: this is the case with radiotherapy. 
Thus, in order to understand in detail the action of ionizing 
radiation on the biological medium, both at the 
macroscopic and molecular level, it is therefore important 
to be able to follow the path of the incident particle in 
biological matter in order to better predict and control its 
effects.
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THEORETICAL MODEL
In the independent atom model IAM, the interactions 
between the fast incident electron and the target molecule 
can be represented in the optical potential formalism by the 
sum of a short-range potential ( ) and a long-range 
potential ( ). The first, presenting a Colombian type 
interaction for each nucleus, composed of two 
contributions: electronic ( ) and ionic ( ).( ) = ( ( ) + ( ))                 (1)

where is the number of atoms composing the molecule.

The term ( ) , presenting the long-range potential, is 
composed of two important contributions. Therefore,( ) = ( ) + ( )                     (2)

Where ( ) and ( ) are respectively the exchange 
potential and the correlation-polarization potential.

The differential cross section (DCS), defined as / ,
is expressed in our case by the sum of the different 
contributions due to the different acting potentials between 
the incident charged particle and the molecular target, its 
expression is given by=  +  +  + +  ( ) +  ( ) +  ( )   

(3)                      

 = | |   and  = | |                  (4)                

Where | | and | | are respectively the short and long-
range scattering amplitudes of P

Th atom of the molecule.

The interference between the two potentials ( ) and( ) gives:

 = 2 | | | | cos(    ) ( )    (5)

=  is the interatomic interaction 

term. The last terms    ( ) ,  ( ) and   ( ) describe
multiple scattering and define respectively the interference 
between the single and double scattering at first and second 
order as well as pure double scattering. They are given by4:

   ( ) = +  (2 + 1)(2 + 1)× (2 + 1) (cos ) 0 0 0× ( , ) ( , ) (6)

 ( ) = ( ) ( 1)× (2 + 1)(2 + 1) (2 + 1)× (2 + 1)(2 + 1)×     2 sin ( 2× 0 0 0 0× 0 0 0 0×  ( , 0) ( ), 0× ( , ) ( , )    
  (7)

( ) = (2 + 1),× (2 + 1)(2 + 1) × 0 0 0 0×  ( , 0) ( , ) ( , )
(8)

The integral cross section (ICS) is obtained by integrating 
the differential cross sections (DCSs) over the entire solid 
angle  :( ) =   =  2               (9)

RESULTS AND DISCUSSION
Results of the actual study are presented in figures 1 and 
2. We observe at 50 that our DCS results including all 
physical phenomena (solid magenta line) are in 
satisfactory agreement with the experimental data reported 
with uncertainties of ~25% by Milosavljevic et al. [6]
(solid black squares), by Homem et al. [8] (solid purple
triangles) and by Colyer et al. [9] (blue stars) even 
considering that a little minimum is nevertheless reported
around   38°
version clearly improves the original IAM model [5], 
dashed black line) that only used the static-polarization 
potential - in particular for scattering angles 18°
and 85° 120° . At 80 eV, our DCS show a good 
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agreement despite a little deviation around   75°
with the measurements reported by Milosavljevic et al.6

(solid black squares) and by Baek et al. [7] (solid green 
circles). For higher impact energies, our DCS are in
excellent agreement with all the experimental data.  

Concerning the integral cross section, we observe that it 

decreases monotonically as a function of projectile energy 

and exhibits good agreement with experimental 

measurements of THF. Considering the generally good 

agreement here obtained, we validate our corrected-IAM. 

Fig.1: Variation of different contributions reported in eq.3 to the differential cross sections (DCS) of THF (C4H8O) molecule as a function of 
scattering angles for incident energies of: 50eV, 80eV, 100eV, 300eV and 1000eV. Available theoretical (dashed black line5) and experimental 

(solid black squares6, solid green circles7, solid purple triangles8 and blue stars9) data taken from the literature are also reported for 
comparison.
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Fig.2: Variation of the elastic integral cross section (ICS) for 

electron scattering by THF molecule as a function of the incident 

energy (solid bleu line). Available experimental (solid black circles7,

open red triangles10 and open green squares11) data taken from the 

literature are reported for comparison.

CONCLUSIONS
We have developed a theoretical model based on the 

partial wave method for the calculation of the elastic 
differential cross sections for electrons scattering by the 
molecular target: THF, which is similar to the deoxyribose 
sugar. 

The contribution of the static term is found as
significant over the whole range of scattering angles for 
all incident energy values.

The contribution of the interatomic term is found 
negligible in the range of high scattering angles for high 
impact energies. While it is important for scattering angles 
below 10° over the entire incident energy range.

The effects of exchange and correlation-polarization 
potentials are negligible for incident energies greater than 
100eV over the entire scattering angular range. 

The multiple scattering effects are more significant at 
low incident energies. 

The integral cross section decreases monotonically as 
a function of projectile energy and exhibits good 
agreement with experimental measurements of THF.
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ABSTRACT: Natural radiation from the sun, especially ultraviolet radiation, plays an important and essential role in the 
growth and development of many plants on the surface of the globe. This study aims to know the effect of ultraviolet sunlight on 
the growth of sunflower plants grown in greenhouses. Sunflower plants are exposed to ultraviolet sunlight during the day for 
approximately ten hours, according to experiments conducted during the spring semester at the Hassiba BENBOUALI University 
of Chlef in Algeria, for a period of more than three months, starting from planting their seeds. We tracked the behavior of these 
plants throughout their growth stages in natural conditions inside greenhouses. We did not notice any effects of the sun's ultraviolet
radiation on the structure or weight of the living matter that makes up the studied sunflower plants, or on the natural compounds 
that absorb ultraviolet sunlight, according to our observations with the naked eye and comparison with previous studies of the 
same species. While ultraviolet sunlight inhibits the process of photosynthesis throughout the plant growth period, which we 
describe in this study. Our study indicates that the current level of solar UV radiation influences the performance of sunflower 
plants even though the dry plant biomass may not be affected.
Keywords: Ultraviolet sunlight; Sunflower plant, Photosynthesis, Greenhouses.

INTRODUCTION
This study aims to determine the effect of solar ultraviolet 
radiation on the growth of sunflower plants inside greenhouses1.
Solar radiation is based on UV-B and UV-A in the range of 280-
400 nm1-2. The effect on plants of this minor percentage of solar 
energy is potentially harmful because these short wavelengths 
are capable of causing deleterious damage to plant cells2-3. Plants 
are vulnerable to increased solar ultraviolet radiation because 
many cellular components such as nucleic acids, proteins, lipids, 
and quinines can directly absorb solar ultraviolet radiation3. The 
effect of increased solar ultraviolet radiation on the growth and 
physiology of many plants, including cultivated or forest tree 
species, both in greenhouses and in the open field, has become 
one of the research topics the most critical of recent decades4.

Studies of the effect of natural solar ultraviolet radiation on five 
tropical species have shown that tropical vegetation responds to 
the actual level of natural solar radiation5. A reduction in biomass 
accumulation due to exposure to solar ultraviolet radiation has 
been observed in several tree and crop species6. Increased 
exposure to solar ultraviolet radiation reduced the photosynthetic 
rate of many species and, in general, the reduction was more 
pronounced under growth chamber or greenhouse conditions 
than under field conditions7. Reduction in the rate of 
photosynthesis can result from damage to various molecular 
mechanisms of the photosynthetic machinery8-9. There is 
evidence that solar ultraviolet absorbing pigments have adaptive 
value in plants growing in regions of high solar ultraviolet 
radiation9-10. The defense mechanism of increasing solar 
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ultraviolet absorbing compounds partially neutralizes the 
harmful effects of solar ultraviolet radiation10. Solar ultraviolet 
radiation induces photo protection by increasing the production 
of compounds that strongly absorb solar ultraviolet radiation in 
leaf epidermal tissues11. Tropical plants receive much higher 
levels of ambient solar ultraviolet radiation than those growing 
in temperate regions12. The gradual reduction of solar ultraviolet 
radiation indicates the impact of sunflower plants on the level of 
biological activities and processes related to biophysics13-14. The 
primary objective of this study was to determine whether 
sunflower plants are sensitive to solar ultraviolet radiation by 
measuring its effects on growth and solar ultraviolet absorbing 
compounds14-15.

EXPERIMENTAL
Sunflower seeds (Helianthus annuus L.) were planted in 50 pots 
filled with a special mixture of high-quality soil, vermiculite and 
peat. The plants were thinned to one per pot and were grown in 
a greenhouse at Hassiba BenboualI University under natural 
photoperiod between February and June 2016. The daily 
maximum and minimum temperatures were close to 24 and 
20°C, respectively. The incoming solar ultraviolet radiation was 
provided from its main source during the daily period and for a 
period of approximately ten hours as an average time throughout 
the growth period of the studied sunflower plant. All 
measurements were performed on at least 5–7 individual plants 
per treatment. Treatments were compared using independent 
samples Student's t test at the 5% level (Microsoft Excel/PC 9.0 
for Windows).

RESULTS AND DISCUSSION
Our descriptive study showed that solar ultraviolet radiation did 
not affect the biomass of sunflower plants grown in the 
greenhouse, regardless of the sampling period. Tissues that lack 
compounds that absorb more solar UVB may nevertheless have 
other protective mechanisms, such as epidermal wax and/or 
trachoma. Future studies should investigate the effects of solar 
UV radiation on alternative protection mechanisms of sunflower 
plants. Reduced growth is caused by leaf expansion, which is a 
result of the effects of solar ultraviolet radiation on the rate and 
duration of cell division and elongation of sunflower plants. 
While our study showed that the prominent effect of the sun's 
ultraviolet rays on the sunflower plant is the process of 
photosynthesis, which helped this plant to grow normally under 
normal conditions. The process of photosynthesis is considered 
the basic foundation for the growth of sunflowers and other 
plants. Biophysics and biochemistry study this phenomenon, 
each in its own field. For this purpose, we wanted to address in 
this study the benefit of the effect of ultraviolet solar rays on 

plants, especially sunflowers15-16. Sunflowers turn their faces to 
follow the path of the sun as it crosses the sky. But how does this 
happen, according to plant biologists? They use a new 
mechanism different from what was previously thought, 
according to many recent studies. Most plants exhibit 
phototropism, the ability to grow toward a light source. Botanists 
have hypothesized that the ability of sunflowers to follow the 
path of the sun depends on the ability of sunflowers to swing 
their heads. It has long been suggested that east–west oscillations 
in sunflower plants (Figures 1 and 2) lead to improved 
photosynthetic activity of upper leaves. In this study, the direct 
photon flux density coming from the sun source through the 
greenhouse and onto the surface of the upper leaves is not clear.
To estimate the amount of photon exposure resulting from the 
sun's ultraviolet rays and the exchange of carbon dioxide 
resulting from photosynthesis in sunflower leaves, there are 
several methods according to many previous studies. Finally, our 
meta-study shows that the light-dependent CO2 uptake rate in 
the upper leaves of solar trackers can be improved. However, 
many open questions regarding the physiology and adaptive 
importance of heliotropism in the development of sunflower 
plants (Figure 1) remain unanswered. (1) How is night rerouting 
organized? (2) Do light-dependent movements of shoots and 
leave exhibit independent responses or coordinated processes? 
(3) Is heliotropism in sunflowers a blue light-mediated process, 
or are other photoreceptors involved? (4) What plant hormones 
are causally involved in growth redistribution leading to organ 
bending? (5) What are the sites of light perception? (6) Are solar 
movements of the stem and upper leaves true irreversible growth 
processes or, at least in part, swelling-driven nastastic bending 
responses? These and other questions must be answered before 
we can fully understand one of the most common physiological 
processes in the plant kingdom. In a comprehensive analysis of 
phototropism in angiosperms, Iino (2001) concluded that, with 
reference to work on sunflower, shade avoidance is the key 
process behind heliotropic movements. Our observations and 
measurements on stem and leaf phototropism in sunflower 
plants (Figures 1 and 2) do not add new insights on this topic. 
Nevertheless, we conclude that a photomorphogenic, 
photochromic-regulated shade-avoidance response is a major 
biological function of the heliotropic growth movements in 
sunflower plants, and not optimization of photosynthesis per se

16-17.
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Fig.1: One of the stages of the sunflower plant

Fig. 2: Sunflower plant flower

CONCLUSIONS
In this study, enhanced solar ultraviolet radiation did not cause 
any damage to sunflower plants on the second sampling. This 
could be a consequence of leaf shading as plants developed 
during the period of rapid growth, leading to decreased levels 
and duration of exposure of lower leaves to solar ultraviolet 
radiation. Compared to the upper leaves17. These facts could 
contradict the harmful effects of increased solar ultraviolet 
radiation on plants17-18. Future studies should aim to investigate 
the effects of increased solar ultraviolet radiation at an early 
stage of sunflower development and should include the study of 
alternative defense mechanisms, such as epicuticular waxes, 
trachoma and antioxidants18.
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ABSTRACT: Deep leaning models have shown great promise in cancer detection and classification. They possess 
numerous advantages over previous methods; however, training well-rounded models is very difficult due to several obstacles, 
namely the data size and architecture depth. Although the technology and hardware have seen major developments in the last 
decade, the task still requires lots of data and deep network architectures. Convolutional Neural Networks (CNNs) are the most
basic of feed forward deep learning architectures, their simple design and straightforward approach compared to more complex 
architectures makes them ideal for the conducted study as the influence of network depth and data augmentation is much more 
pronounced when working with CNNs. Our objective is to investigate the impact of the architecture’s depth and data size on the 
model’s performance for breast cancer classification. We compared between three models trained on the BreaKHis dataset, the 
first 2 models (model 1 and model 2) had more depth with 5 convolution layers to the model 3’s 3 convolution layers, model 1 
was trained using data augmentation and model 2 without data augmentation. Model 3 had the better accuracy between the three 
models, however, model 1 and model 2 had a better performance in terms of precision, recall and F1 score, with model 1 (using 
data augmentation) having the best results in these metrics than the other 2.
Keywords: Deep Learning; Breast Cancer; Cancer Classification; Convolutional Neural Networks

INTRODUCTION
Breast cancer early diagnosis through screening programs is the 
key to helping cancer patients overcome their disease1. However, 
the sheer number of participants requiring their medical images 
to be evaluated by a medical expert rendered the task nearly 
impossible to perform seamlessly. This necessitated the 
development of Computer Assisted Diagnosis (CAD) systems, 
using a machine learning approach at first and eventually 
substituting the latter for deep learning, to assist specialists and 
doctors1.

CAD systems are used for medical image analysis tasks, mainly 
segmentation and, the focus of this study, classification2. With 
the latter task focusing on detecting lesions within the breast 
images and classifying them as either malignant (cancer) or 

benign (non-cancer)2. Spawning from the same base architecture, 
models are designed with some minor modifications to tweak the 
performance to better suit the task and the means available. 
Alongside these modifications, there’s also data augmentation 
methods to help with the training of a model, leading to an 
overall better performance2. Therefore, just how much can these 
two factors (architecture depth and data augmentation) influence 
a model’s overall performance for breast cancer classification?

EXPERIMENTAL
Convolutional Neural Networks (CNNs) play a crucial role in 
numerous deep learning applications, particularly in the field of 
computer vision2. Their ability to extract features makes them 

2023



78 

highly adaptable and versatile. Today, there are various CNN-
based architectures with different underlying philosophies, and 
when implemented properly, many of these modern 
architectures outperform a standard CNN. However, due to the 
design of these architectures, which allows for the addition of 
convolution layers without sacrificing efficiency, the impact of 
network depth is not as significant as it is with a standard CNN.

This is the reason why for this study we only consider and 
compare the results from standard CNN-based models.

Dataset

The BreaKHis dataset5 (Table 1) is a collection of 
histopathological breast tissue images acquired through Surgical 
Open Biopsy (SOB) from a total of 82 patients. The dataset
contains 7909 images divided into 2 classes (Benign and 
Malignant), and each class is divided into 4 subclasses each. The 
dataset provides the images at different magnification level (x40, 
x100, x200 and x400) which results in an overall well diversified 
dataset for breast cancer classification training.

Table 1. BreaKHis Dataset Summary1

Magnification Benign Malignant Total

40x 625 1,370 1,995

100x 644 1,437 2,081

200x 623 1,390 2,013

400x 588 1,232 1,820

Total 2,480 5,429 7,909

# Patients 25 58 82

Compared Models

To thoroughly examine the effect of architecture depth, we have 
conducted a comparison between standard CNNs where three 
models were evaluated. The first (model 1) and second (model 2) 
models (shown in figure 1) are based on a CNN architecture 
consisting of 5 convolutional layers, 3 pooling layers, and 2 fully 
connected layers for classification 3. Model 1 was trained with data 
augmentation, while model 2 was trained without data 
augmentation3. The third model (model 3, shown in figure 2) 
employs a CNN architecture with 3 convolutional layers, 3 
pooling layers, and 3 fully connected layers4. Similarly, model 3 
was trained without data augmentation4. More information on the 
three models is available on Tables 2 and 3.

Fig. 1: Models 1 & 2 Design

Fig. 2: Model 3 Design
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Table 2. Models 1 & 2 Specifications

Model Author Layers

Model 1 & 

Model 2

Bardou et 

al.

Type
Conv + Max 

Pool

Conv + Max 

Pool
Conv Conv

Conv + Max 

Pool
FC

Channels 64 96 128 256 256 2000, 2

Filter Size 3x3 3x3 3x3 3x3 3x3

Pooling Size 3x3 3x3 3x3

Pooling 

Stride
2x2 2x2 2x2

Table 3. Model 3 Specifications

Model Author Layers

Model 3
Dabeer et 

al.

Type Conv + Max Pool Conv + Max Pool Conv + Max Pool FC

Channels 32 64 128 64, 64, 2

Filter Size 5x5 5x5 5x5

Pooling Size 3x3 3x3 3x3

Pooling Stride 1x1 1x1 1x1

Table 4. Comparison Results of the Three Models

N° Model Performance

Accuracy Recall Precision F1 Score

1 Model 1 96.53% 97.58% 97.38% 97.47%

2 Model 2 94% / / /

3 Model 3 99.86% 93% 93% 93%

RESULTS AND DISCUSSION
The results of each model’s performance is shown in Table 4.
The performance of the different models was assessed based on 
some quantitative metrics. Model 1 (with data augmentation) 
achieved a better accuracy (96.53%) than model 2 (94.26%) 
(without data augmentation)3. However, model 3, based on a 
different architecture and trained without data augmentation, 
provided the best accuracy (99.86%)4. Furthermore, model 1 
showed overall better results in terms of F1 score (97.47% 
opposed to 93%), Precision (97.38% opposed to 93%) and 
Recall (97.58% opposed to 93%) when compared with model3-

4. Note that, accuracy alone isn’t sufficient as an evaluation 
metric, nor is it dependable due to the occurrence of overfitting 
in smaller data sets.

While model 3 makes use of larger convolution filter sizes 
(meaning it has a larger receptive field), model 1 still 
outperformed it in terms of recall and precision, which reflects 

the importance of architecture depth. Model 1 sacrificed the 
larger receptive fields for more hierarchical feature extraction, 
which provided higher level feature maps.

As for data augmentation, model 1 employed a series of 
geometrical transformations such as rotations (90, 180 and 270) 
and horizontal flipping, which not only provided more data for 
the model to train on, but it helped significantly in improving the 
model’s ability to generalize its outcome over the data and avoid 
overfitting.

CONCLUSIONS
In this work, we compared between similar CNN architectures 
that were trained on the BreaKHis dataset with the main focus 
being the influence of data augmentation and architecture depth. 
We proceeded by highlighting the differences in training 
approach between three models and establish a relation between 
the outcomes of the models and influence depth as well as data 
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augmentation. As a result, model 3 performed best in terms of 
accuracy (99.86%), but model 1 outperformed model 3 in terms 
of precision (97.38%) and most importantly recall (97.58%) and 
it also outperformed model 2 in terms of accuracy (96.53% to 
94.26%) which doesn’t employ data augmentation. Therefore,
the deeper the network is, the better is the overall performance 
of the network. Even when spatial context was better captured 
with higher receptive fields, more depth provided better results.
We can also conclude that data augmentation is a net positive 
during a network’s training process granted that the training data 
is augmented to reasonable sizes.
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ABSTRACT: This study investigates the performance of four different reconstruction algorithms - FDK (Feldkamp-
Davis-Kress), CGLS (Conjugate Gradient Least Squares), LSMR (Least Squares Minimum Residual), and MLEM (Maximum 
Likelihood Expectation Maximization) in the context of 3D X-ray imaging. Using the TIGRE (Tomographic Iterative GPU-based 
Reconstruction) toolkit, these algorithms were applied to the SophiaBeads dataset, a resource specifically developed for testing 
and comparing reconstruction methods in X-ray computed tomography. Our findings indicate that despite the FDK algorithm is 
simple and fast, the LSMR algorithm provides height detail sharpness, good measurement and low noise. While CGLS and 
MLEM provide more or less good object detail separations, proving to be more effective in handling noise and artifacts. Future 
studies might delve into optimizing algorithm parameters to improve the quality of reconstruction.
Keywords: X-ray Computed Tomography, TIGRE Toolkit, Reconstruction algorithms, SophiaBeads dataset.

INTRODUCTION
Three-dimensional (3D) X-ray imaging has known a
revolutionary development in several fields, ranging from 
medicine and biology to engineering and archaeology. It offers 
unprecedented three-dimensional visualization of the internal 
structures of objects and organisms, enabling non-destructive 
inspection. The recent integration of 3D X-ray imaging systems 
in industrial and research facilities has increased the need for 
efficient and accurate reconstruction algorithms to convert the 
acquired data into meaningful images.

Reconstruction algorithms play an essential role in the 3D X-ray 
imaging process as they transform the projection data collected 
by the imaging system into a 3D representation of the scanned 
object. A wrong choice of the reconstruction algorithm can 
significantly affect the quality of the reconstructed image and, 
therefore, the accuracy of the subsequent analysis.

This paper focuses on a comparative study of four reconstruction 
algorithms - FDK (Feldkamp-Davis-Kress)1, CGLS (Conjugate 
Gradient Least Squares)2, LSMR (Least Squares Minimum 

Residual)3, and MLEM (Maximum Likelihood Expectation 
Maximization)4. These algorithms were applied to the 
SophiaBeads dataset using the TIGRE (Tomographic Iterative 
GPU-based Reconstruction) toolkit5.

The aim of this study is to assess the performance of these 
reconstruction algorithms in terms of 2D reconstructed image 
quality.

METHODS
The study made use of the SophiaBeads dataset and the TIGRE 
toolkit to apply and compare the FDK, CGLS, LSMR, and 
MLEM reconstruction algorithms.

SophiaBeads Datasets

The SophiaBeads dataset6-8, developed specifically for testing and 
comparing X-ray computed tomography reconstruction methods, 
served as our data source. The dataset is a scan of a plastic tube 
filled with uniform Soda-Lime glass beads (SiO2-Na2O), offering 
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a complex yet regular internal structure that is ideal for evaluating 
reconstruction algorithms. The sample was scanned by 512 
projections under consistent conditions across datasets. Figure 1 
shows one projection image from the SophiaBeads dataset.

Fig. 1: Projection image from the SophiaBeads dataset

TIGRE Toolkit

We utilized the TIGRE (Tomographic Iterative GPU-based 
Reconstruction)9 toolkit for our image reconstruction analyses. 
TIGRE is an open-source toolbox dedicated to computer-aided 
tomography, designed to be both flexible and efficient. It enables 
users to easily test new reconstruction methods while leveraging 
the power of modern GPUs. TIGRE offers a variety of 
reconstruction algorithms, from analytical methods like FDK to 
iterative methods like CGLS, LSMR, and MLEM. These 
algorithms can be easily applied to the data, with numerous 
options for adjusting the reconstruction parameters and visualizing 
the results.

Algorithms of Reconstruction

For this study, we chose to compare four distinct reconstruction 
algorithms: FDK (Feldkamp-Davis-Kress), CGLS (Conjugate 
Gradient Least Squares), LSMR (Least Squares Minimum 
Residual), and MLEM (Maximum Likelihood Expectation 

Maximization). Each of these algorithms offers a unique approach 
to image reconstruction from computer-aided tomography data. 
The FDK algorithm is an analytical reconstruction method 
designed for cone tomography. In contrast, CGLS, LSMR, and 
MLEM are iterative reconstruction algorithms. This means they 
do not directly compute the solution but rather refine an initial 
estimate step-by-step until a satisfactory result or convergence is 
achieved.

Specifically, these iterative algorithms, namely CGLS, LSMR, 
and MLEM, continuously refine the image estimate to reduce the 
disparity between the measured projection data and the projection 
data simulated from the current image estimate. The aim is to 
ensure that the reconstructed image, when projected, would 
closely match the actual measured data.

Of these iterative methods, MLEM stands out as it incorporates a 
statistical model of the data acquisition process. While CGLS and 
LSMR primarily focus on minimizing the algebraic difference 
between measured and estimated data, MLEM considers the 
inherent randomness and noise in the data. It uses a probabilistic 
approach, optimizing the likelihood that the simulated data from 
the current image estimate would give rise to the observed 
measurements, given the statistical nature of the acquisition 
process.

Our data preparation and analysis were conducted on a high-
performance HP Z8 workstation, which allowed efficient and 
accurate analysis through modern high-performance computing 
technologies.

RESULTS AND DISCUSSION
Our analysis of the four reconstruction algorithms - FDK, CGLS, 
LSMR, and MLEM - produced a variety of notable results, 
allowing for a thorough evaluation of each method's 
performance.

The reconstructed images from each algorithm provided a direct 
visualization of their capabilities to reconstruct the internal 
structure of the sample from the projection data. Figure 2 shows 
the reconstructed images obtained from each algorithm. On 
visual inspection, it appears that while the FDK algorithm
provides a clear overview of the structure with good resolution,
the CGLS, LSMR, and MLEM algorithms also seem to offer less 
noisy results.
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Fig. 2: Reconstructed images obtained by studied algorithms

Diving deeper into the quantitative attributes, Figure 3 
showcases line profile graphs, which offer insights into the 
spatial resolution across the reconstructed images. The sharper 
transitions exhibited by the CGLS, LSMR, and FDK algorithms 
underscore their proficiency in capturing fine details, rendering 
them superior in terms of spatial resolution compared to the 
MLEM algorithm. The latter, however, stands out in its ability to 
suppress noise, an attribute that can be paramount for certain 
applications.

Further elucidation is provided by the pixel intensity histograms 
in Figure 4. These histograms shed light on the contrast 
dynamics of the reconstructed images. Notably, the CGLS and 
LSMR algorithms demonstrate a more pronounced separation 

between the glass beads and the plastic tube intensities, 
suggesting their adeptness at delineating different materials. In 
contrast, the FDK and LSMR histograms reveal an overlap in the 
pixel intensities of the plastic and the void, which could pose 
challenges during segmentation tasks. The MLEM algorithm, 
despite its underwhelming performance in representing the glass 
beads, presents a redeeming quality by distinctly portraying the 
plastic, showing slight separation from the void.

Figure 5 zooms in on a 100x100 pixels window at the center of 
each reconstructed image, offering a closer look at the detail 
sharpness. The reconstruction algorithms FDK and LSMR 
appear to produce sharper images than CGLS and MLEM 



84 

algorithms, further supporting the quantitative evaluations 
showed in Figure 3.

Fig. 3: Line profiles for each reconstruction algorithm
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Fig. 4: Pixel intensity histograms for each reconstruction algorithm
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Fig. 5: Zoom (100 pixels x 100 pixels window in the center of each image) on the images reconstructed by studied algorithms

Furthermore, our study incorporated a statistical analysis of pixel 
intensities in the reconstructed images, as presented in Table 1. 
The analysis of pixel intensities is paramount as it mirrors the 
physical properties, such as attenuation coefficients, which are 
essential for interpreting images in tomography. Even though the 
average pixel intensity values for the different algorithms are 
relatively close, these slight variations can have substantial 
implications on the image quality, especially when assessed in 

conjunction with the standard deviation. For instance, the FDK 
displays the highest mean value and the largest standard 
deviation, indicating a more significant variability in pixel 
intensities. This could translate to a superior delineation of object 
details compared to other algorithms. However, LSMR and 
MLEM, with their marginally reduced standard deviations, 
might offer enhanced performance in terms of noise reduction, 
even though the difference between FDK and CGLS is subtle.

Table 1. Descriptive statistics of pixel intensities for each reconstruction algorithm

Statistic FDK CGLS LSMR MLEM

Count 250000 250000 250000 250000

Mean 0.072218 0.063639 0.064980 0.065388

Standard Deviation 0.096188 0.096144 0.093083 0.074485

Minimum -0.181705 -0.108001 -0.087765 0.000892

25% 0.004615 -0.000298 -0.001081 0.015317

50% 0.039362 0.022439 0.023612 0.023018

75% 0.164413 0.178406 0.179257 0.128712

Maximum 0.384844 0.298797 0.304676 0.268748
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For the studied object, the results of our study suggest that while 
the FDK algorithm is simpler, LSMR might give higher quality 
of measure, offering a better balance between detail sharpness, 
and noise handling. However, the choice of the reconstruction 
algorithm should be based on the type of object to be explored 
and the specific requirements of the application, considering 
both the quality of the reconstructed image and the 
computational efficiency.

CONCLUSIONS
The present study, aimed to provide a comparative analysis of 
four reconstruction algorithms - FDK, CGLS, LSMR, and 
MLEM in the context of 3D X-ray imaging. Our findings 
highlighted distinct strengths and weaknesses of each algorithm, 
offering valuable insights into their applicability in different
settings.

While the FDK algorithm's simplicity, superior detail sharpness
and speed are attractive, our results suggest that LSMR 
algorithm offer height detail sharpness and good attenuation 
coefficient measurement, proving more effective in handling 
noise and artifacts. Depending on the internal composition of the 
object to be studied, LSMR and MLEM algorithms could offer 
a good segmentation and separation of the different details of the 
object. These observations were supported by both visual 
inspection and quantitative analysis of the reconstructed images.

The results of this study underscore the importance of ongoing 
research in the field of 3D X-ray imaging, particularly in the area 
of algorithm development and optimization. Future research 
could explore the optimization of algorithm parameters and the 
testing of these algorithms with multiple datasets, potentially 
enhancing the quality of reconstruction and pushing the 
boundaries of what can be achieved with 3D X-ray imaging.
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ABSTRACT: In diagnostic radiology, the radiation exposure of a patient is performed by keeping the dose received by 
the patient as low as reasonably achievable (ALARA). Additional X-ray beam filtration is a solution that may contributes to 
enhance the beam quality and to reduce patient dose. The added filtering material type and its thickness play an important role to 
achieve optimally this goal. In this work many type of X-ray filtration are simulated by Monte Carlo method. Obtained results 
demonstrate well that it is possible to reduce dose received by patients and staff in diagnostic radiology by using thin filtration 
made from Tantalum, Tungsten, or Gold. It was, particularly, found that Tantalum filters could significantly reduce the dose due 
to scattered radiation and improve image quality without compromising diagnostic accuracy. Moreover, Tantalum filters do not 
constitute any significant risks to patients and their use is cost-effective.
Keywords: Diagnostic radiology, Additional filter, Radiation dose, Monte Carlo simulation.

INTRODUCTION
Diagnostic radiology plays a pivotal role in modern healthcare, 
providing invaluable information for the diagnosis and treatment 
of various medical conditions. It employs ionizing radiation, 
such as X-rays, to produce detailed images of the human body. 
While diagnostic radiology has revolutionized medical practice, 
concerns about patient radiation dose have always been at the 
forefront of discussions surrounding its safety. In recent years, 
the focus has shifted towards the impact of additional filtration 
on patient radiation dose in diagnostic radiology.

Radiation exposure is an inherent part of diagnostic radiology, 
and it is essential for obtaining high-quality images. However, 
excessive radiation exposure can lead to adverse effects, 
including an increased risk of cancer and tissue damage. To 
mitigate these risks, healthcare providers have been exploring 
various strategies to optimize radiation dose while maintaining 
diagnostic image quality. One such strategy is the use of 

additional filtration in the X-ray beam.

Additional filtration involves the insertion of filters, such as 
aluminum or copper, into the X-ray tube. These filters absorb 
low-energy photons, resulting in a higher mean energy of the X-
ray beam. The primary objective is to enhance the diagnostic 
quality of the images and, concurrently, reduce the radiation dose 
delivered to the patient.

This topic is of significant interest because it presents a delicate 
balance between diagnostic accuracy and patient safety. On one 
hand, improved image quality can lead to more accurate 
diagnoses, potentially reducing the need for additional 
procedures and their associated risks. On the other hand, 
optimizing radiation dose by incorporating additional filtration 
can lower the long-term radiation risk to the patient, contributing 
to safer medical practices.

This introduction sets the stage for a comprehensive discussion 
on the impact of additional filtration on patient radiation dose in 
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diagnostic radiology. We will explore the principles of additional 
filtration, its potential benefits, challenges, and the ongoing 
efforts to strike the right balance between diagnostic accuracy 
and patient safety in the field of radiology. Understanding the 
implications of additional filtration is crucial in ensuring that 
diagnostic radiology continues to provide the maximum benefits 
to patients while minimizing their exposure to ionizing 
radiation. .

The elimination of the X photons of low energy from the 
spectrum by the additional filtration is an essential element, both 
for the radiation protection of patients and for the quality of the 
image. The objective of this work is to study the effectiveness of 
additional X-ray beam filtering by different materials on the 
reduction of the absorbed dose. 

EXPERIMENTAL
The aim of this study was to investigate the effect of some 
materials, like tantalum, tungsten, or gold, used in thin additional 
filtration on the x-ray spectrum by means of Monte Carlo 
simulation. 

Fig.1: X-ray tube

The additional tantalum filter has been shown to improve image 
quality in various radiographic explorations, including chest, 
abdominal, and pelvic radiography. By reducing scatter radiation, 
the filter enhances the differentiation between different tissues, 
allowing for clearer and more detailed images. This is 
particularly useful in exams where the contrast between tissues 
is critical, such as in the detection of lung nodules or abdominal 
masses.

The X-ray tube with tungsten anode and additional filter was 
modeled by Monte Carlo simulation (code PENELOPE).  The 

typically utilized additional filtration is based on aluminum. The 
simulation can predict the X-ray spectrum after passing filters of 
different materials W, Au, Ta and radiation dose in a cranium 
phantom. 

RESULTS AND DISCUSSION
Additional filtration is used to increase the average energy of the 
polychromatic X-beam, and to eliminate low energy photons 
unable to reach the film, but of sufficient energy to reach and 
unnecessarily irradiate the patient. The all-purpose filter is made 
of aluminum, which is a great filter for low-energy photons 
before they reach the patient.  According to results of Figure 2,
2 mm of Al absorbs all photons with energies below 20 keV. A 
thickness of more than 3 mm does not bring any advantage, 
because there is absorption of photons of greater energy, which 
requires an unconsidered increase in the exposure time. 

Fig.2: The effects of the thickness filtration (aluminum) on the X 

ray spectrum

The NCRP (National Council on Radiation Protection and 
Measurements) has established the following recommendations 
regarding total filtration (inherent + additional): below 50keV: 
0.5mm Al, between 50 and 70 keV: 1.5mm Al and Above 70 keV: 
2.5mm Al. Potential disadvantages for using aluminum as 
additional filters: Although aluminum is a light and economical 
material, it can be relatively fragile and easily damaged. 
Additionally, aluminum can chemically react with certain types 
of liquids or gases, which can reduce its effectiveness as a filter. 
Using filters made of different materials such as aluminum, 
tungsten, gold or tantalum in radiology has been a subject of 
much interest in recent years due to their ability to improve 
image quality while reducing radiation exposure. The spectrum 
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of x-rays after different filters is well illustrated in the figure 
below.

Fig.3: X-ray spectrum after Aluminum, gold, tungsten and 

tantalum filtration

We notice, when replacing the Al filter with a Au, W or Ta filter, 
a large part of X photon with a lower energy base of 50keV are 
eliminated, these photons do not participate in the formation of 
the radiographic image because these photons are absorbed in 
the human body, but they participate in dose deposition, so the 
Ta filter minimizes the deposited dose received by the patient 
during radiology. We also note that the Ta filter eliminated X 
photons for an energy greater than 70keV, which scatter before 
waiting for the X-ray film. These photons are detrimental to the 
formation of images (image blur) and contribute to a dose 
deposit in the patient as well as in the operator. The elimination 
of these photons improves the radiographic image and 
minimizes the dose received by the patient and the operator.
The geometry used for the simulation of the radiation dose in a 
cranial phantom is illustrated in the figure 4.

Fig.4: The geometry used for the simulation of the radiation dose in 

a cranial phantom

It is important to note that the change of filter material plays an 
important role on the distribution of the dose in depth and 

therefore on the dose delivered to the patient.

Fig.5: The dose in depth in a cranial phantom

Despite the good results obtained by Al, Au and W, the Ta is the 
best choice in reality for the following reasons: The Tungsten is 
a very dense and tough material but it can be very expensive and 
difficult to work with. Additionally, it can be susceptible to 
corrosion and other types of damage which can shorten its life 
and its effectiveness as a filter. Gold is a precious metal with 
high density, its use as an additional filter may be l expensive. 
As well as the gold has high reflectivity, this can cause X-rays to 
reflect, resulting in loss of image quality and increased radiation 
dose to the patient. While Tantalum is a hard material that is 
highly resistant to corrosion and mechanical damage, making it 
an excellent choice for filters. 

CONCLUSIONS
Thus study shows clearly that It is possible to reduce doses to 
patients and staff in diagnostic radiology by using thin filtration 
made of Tantalum, Tungsten, or Gold. Several studies have 
investigated the effectiveness and safety of the additional 
Tantalum filter in radiology. The results suggest that the use of 
Tantalum filters can significantly reduce the dose received by the 
patient due to the scattered radiation without affecting the image 
quality or compromising the diagnostic accuracy. Moreover, 
Tantalum filters do not induce any significant risk to patients and 
their use is cost-effective.

AUTHOR INFORMATION
Corresponding Author

*Asma Benaidja

30 60 90

0,0

0,4

0,8

 Fi
lter

s

Photon energy (keV)
No

rm
al

ise
d 

In
te

ns
ity

Au
Ta

W

Al



91 

Email address: asma.benaidja@univ-jijel.dz

REFERENCES
1.   Eunhye Kim, Kenzo Muroi, Takahisa Koike and Jungmin Kim.  
Dose Reduction and Image Quality Optimization of Pediatric Chest 
Radiography Using a Tungsten Filter, 2022. Bioengineering 2022, 9, 583.
2. Hiroki Kawashima, Katsuhiro Ichikawa , Daisuke Nagasou , 
Masayuki Hattori. X-ray dose reduction using additional copper filtration 
for abdominal digital radiography: Evaluation using signal difference-to-
noise ratio, 2017. j.ejmp.2017.01.015
3. Ji Sung Jang, Hyung Jin Yang, Hyun Jung Koo, Sung Ho Kim, 

Chan Rok Park, Suk Hwan Yoon, So Youn Shin, Kyung-Hyun Do, 
Image quality assessment with dose reduction using high kVp and 
additional filtration for abdominal digital radiography, 2018. Physica 

Medica 50 (2018) 46–51
4. Taku Kuramoto , Shinya Takarabe , Kenshi Shiotsuki , Yusuke 

Shibayama , Hiroshi Hamasaki , Hiroshi Akamine , Kazutoshi Okamura , 
Toru Chikui , Toyoyuki Kato , Kazunori Yoshiura. X-ray dose reduction 
using additional copper filtration for dental cone beam CT, 2021. Physica 
Medica 81 (2021) 302–307
5.  Ernest U. Ekpo, Alishja C. Hoban, Mark F. McEntee. Optimisation 
of direct digital chest radiography using Cu filtration, 2014. Radiography 
20 (2014) 346e350
6. M. A. Staniszewska, T. Biegan´ski, A. Midel and D. Baran´ska. 
Filters for dose reduction in conventional x ray examinations of children 
radiation protection dosimetry, 2000. vol. 90, nos 1–2, pp. 127–133
(2000) 
7. Marie-Louise Butler, BSca, and Prof. Patrick C. Brennan, PhDa. 
Nonselective Filters Offer Important Dose-Reducing Potential in 
Radiological Examination of the Paediatric Pelvis, 2009. Journal of 
Medical Imaging and Radiation Sciences 40 (2009) 15-23.



92 

Retinal Vessel Segmentation:  Overview, Challenges and the 

Future
I. Mehidi,a,b* D. Jabri,b D.E.C. Belkhiat, a,b

a Department of Physics, Faculty of Sciences, Ferhat Abbas University, 19000, Setif, Algeria.
b Laboratory of Dosing, Analysis and Characterization with High Resolution DAC HR, Ferhat Abbas University, Setif, Algeria.

ABSTRACT: Retinal vessel segmentation is vital in medical image analysis, providing crucial insights for diagnosing 
and managing eye diseases like diabetic retinopathy, hypertension-related issues, and age-related macular degeneration. These 
conditions can cause irreversible vision impairment if not promptly detected. However, segmenting retinal vessels from fundus 
images is challenging due to factors like image noise, varying vessel characteristics, and the presence of anatomical structures.      
This paper offers a comprehensive overview of current segmentation methods, analyzing strengths and weaknesses. It emphasizes 
persistent challenges, such as image quality issues, driven by factors like resolution and lighting conditions. With a growing
demand for real-time solutions, the pursuit of effective segmentation remains critical, especially in clinical settings. While deep 
learning shows promise, addressing remaining obstacles requires ongoing research. Despite progress, the quest for improved 
retinal vessel segmentation methods remains dynamic and essential in medical imaging and ophthalmology.

INTRODUCTION
The human eye is a remarkable organ, capable of capturing 

intricate details of the world around us. Among its many 

components, the retina plays a pivotal role in translating light into 

meaningful visual information. Within this delicate layer of tissue 

lies a complex network of blood vessels that nourish the retina and 

are integral to its functioning. The analysis of these retinal vessels 

has emerged as a critical field in medical imaging, with profound 

implications for the diagnosis and management of various ocular 

and systemic diseases.

Retinal vessel segmentation, a process aimed at delineating 

these intricate blood vessels from retinal images, has garnered 

significant attention in the realms of ophthalmology, medical 

imaging, and artificial intelligence. It is a fundamental step in the 

analysis of retinal images and plays a vital role in the early 

detection and monitoring of conditions such as diabetic 

retinopathy, hypertension, and cardiovascular disease. By 

automating the segmentation of retinal vessels, clinicians can 

make more accurate diagnoses, track disease progression, and 

tailor treatment plans to individual patients' needs1-5.

This article provides a comprehensive exploration of retinal 

vessel segmentation, delving into its historical evolution, the 

fundamentals of the process, the transition from traditional 

techniques to cutting-edge machine learning and deep learning 

methods, and the associated challenges and opportunities. 

Moreover, it discusses the recent advances that have propelled this 

field to new heights and contemplates the exciting future that 

awaits, where retinal vessel segmentation stands poised to 

revolutionize medical diagnostics and patient care.
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FUNDAMENTALS OF RETINAL 
VESSEL SEGMENTATION 
To understand the complexities and nuances of retinal vessel 

segmentation, it is essential to grasp the following key 

fundamentals:

1. Anatomy of the Human Retina

The eye, a highly intricate organ essential for our visual perception, 

consists of numerous crucial components, including the cornea, 

iris, lens, retina, optic nerve, sclera, and retinal vessels, as depicted 

in Figure 1. The cornea serves as the transparent outer layer 

responsible for directing incoming light. Meanwhile, the iris, the 

eye's colorful portion, regulates the pupil's size, thereby controlling 

the amount of light entering the eye. Positioned behind the iris, the 

lens, a flexible and transparent structure, aids in focusing light onto 

the retina. Located at the eye's posterior, the retina is a delicate 

layer of tissue housing photoreceptor cells, which detect light and 

relay visual information to the brain via the optic nerve. To 

safeguard the eye's inner components, the sclera functions as a 

resilient, white outer layer. The eye's circulatory system, 

comprised of blood vessels, performs a pivotal role in upholding 

the eye's well-being and optimal operation. These vessels are 

responsible for delivering essential oxygen and nutrients to the 

eye's diverse structures. Additionally, the retinal vessels contribute 

to the elimination of waste products and the regulation of 

intraocular fluid pressure, a critical aspect in preserving the eye's 

correct form and shielding its delicate components from harm6-7.

Fig. 1 Anatomy of the eye8.

2. Role of Retinal Blood Vessels

The retinal blood vessels are responsible for supplying oxygen 

and nutrients to the retinal tissue. They form a dense network that 

spans across the entire retina, branching into arterioles and venules. 

This vascular system is highly organized and plays a critical role 

in maintaining the health and functionality of the retina9.         

3. Image Acquisition

To perform retinal vessel segmentation, high-quality retinal 

images must be acquired. This typically involves techniques such 

as fundus photography, optical coherence tomography (OCT), or 

fundus fluorescein angiography (FFA). Each imaging modality 

has its own advantages and limitations, and the choice depends on 

the specific clinical context and diagnostic objectives10.

Fig. 2: a) Sample fundus image. and (b) fundus camera11

4. Retinal Vessel Segmentation

Retinal vessel segmentation is a crucial step in the analysis of 

retinal images, as it involves the identification and delineation of 

blood vessels within the retina (see fig.3). This process serves as a 

foundational element for various medical applications, enabling 

the early detection and monitoring of ocular and systemic diseases. 

Retinal vessel segmentation has come a long way, evolving from 

manual methods to advanced automated techniques. Early efforts 

involved manual tracing of vessels in retinal images, a painstaking 

and time-consuming process. With the advent of digital imaging, 

computer-aided methods emerged, laying the foundation for 

modern segmentation techniques.
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Fig. 3: Retinal vessel segmentation12

5. Challenges in Retinal Vessel Segmentation

Several factors contribute to the complexity of retinal vessel 

segmentation (see fig.4). These include variations in vessel 

appearance, noise and artifacts in retinal images, low contrast in 

some areas of the retina, and the presence of pathologies that can 

alter vessel morphology. Overcoming these challenges is essential 

for accurate segmentation and clinical utility. Understanding these 

fundamentals is essential for anyone entering the field of retinal 

vessel segmentation13-14.

Fig. 4: Complexities of retinal fundus imaging13

In the subsequent sections of this article, we will explore the 

evolution of segmentation techniques, the advent of machine 

learning and deep learning approaches, and the ongoing 

challenges and future prospects of this critical field in medical 

imaging.

RETINAL VESSEL SEGMENTATION 
METHODS                                   
An essential aspect of analyzing retinal images involves the 

precise identification of key attributes within blood vessels. The 

accuracy of this identification heavily relies on the effectiveness 

of blood vessel segmentation. The categorization of retinal 

vessel segmentation methods into systematic groups, based on 

their underlying methodologies, has been an ongoing endeavor 

in the field. Initially, these methods were categorized as contour-

based or region-based. However, as research has advanced, 

novel techniques have emerged, giving rise to various 

subcategories. 

In recent years, researchers have adopted hybrid approaches that 

blend multiple algorithms, blurring the traditional boundaries 

between these methods. For a comprehensive understanding of 

this field, it is beneficial to consult surveys published in the 

literature1-2.

It is crucial to acknowledge that the categorization of retinal 

blood vessel segmentation methods in this review does not 

intend to establish a rigid classification system. 

Many contemporary methods often incorporate techniques 

proposed by earlier researchers to address specific challenges, 

such as image smoothing, feature extraction, and pattern 

recognition. Some methods even employ hybrid approaches. In 

this research, the classification of vessel segmentation methods 

is based on a distinction between supervised and unsupervised 

methods15-16.

1. Unsupervised methods  

Unsupervised learning techniques harness the inherent patterns 

within retinal images to determine whether a specific pixel 

belongs to the vascular structure, operating independently of 

ground truth information. The primary objective of unsupervised 

learning approaches is to autonomously acquire and extract these 

intrinsic patterns from the data, eliminating the requirement for 

explicit human annotation or labeling. These extracted patterns 

subsequently facilitate the segmentation of retinal images into 

regions of interest, such as blood vessels, and enable the 

identification of potential retinal abnormalities or diseases.          

The unsupervised methods reviewed for retinal vessel 

segmentation are primarily divided into six categories, as 
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depicted in fig.5: matched filtering, mathematical morphology 

approach, multi-scale approach, model-based approach, vessel 

tracing approach, and other general approaches.  In comparison 

to supervised methods, unsupervised approaches offer the 

advantages of increased processing speed and reduced 

computational complexity. Therefore, our focus will be on 

exploring these unsupervised methods 17-20.

2. Supervised methods  

Supervised methods rely on pre-existing labeling information 

to determine whether a pixel belongs to a blood vessel or not. 

These algorithms learn a set of rules for vessel extraction based 

on a training dataset consisting of reference images that have 

been manually segmented by professionals, typically 

ophthalmologists. This set of labeled data is commonly referred 

to as the "ground truth". However, acquiring a reliable ground 

truth can be challenging in real-world applications, as noted in 

prior research.

Supervised techniques employ a collection of samples from 

the ground truth to train a classifier capable of distinguishing 

between vessel and non-vessel pixels, creating what is known as 

the training set. These techniques have evolved into machine 

learning and deep learning algorithms, such as Random Forest, 

Support Vector Machine (SVM), K Nearest Neighbors (KNN), 

and Artificial Neural Networks (ANN), which are extensively 

used in the medical field21-22.

Deep-learning networks, when trained on labeled data, 

demonstrate an extraordinary capacity to deal with unstructured 

data, a feature that endows them with the ability to process an 

exceptionally vast and diverse range of input data when 

contrasted with traditional machine learning methodologies. 

This inherent adaptability positions deep learning models at the 

forefront of many fields, offering the promise of superior 

performance across various applications. However, it is crucial 

to acknowledge that achieving such high-performance levels in 

deep learning models often comes with certain prerequisites and 

challenges. 

One of the primary requirements is the availability of a 

substantial training database, meticulously annotated to facilitate 

the model's learning process. This requirement becomes 

particularly pronounced in complex tasks such as retinal vessel 

segmentation, where the model must accurately delineate 

intricate structures within medical images. Consequently, the 

acquisition and curation of a sufficiently large and well-

annotated dataset can pose a formidable obstacle in the pursuit 

of excellence in deep learning-based retinal vessel 

segmentation23-24. Addressing these challenges effectively is 

pivotal to harnessing the full potential of deep learning in 

medical image analysis and other data-driven domains24.

Fig. 5: Classification of retinal vessel segmentation methods

THE FUTURE OF RETINAL VESSEL 
SEGMENTATION

The future of retinal vessel segmentation promises a 

transformative trajectory marked by a convergence of cutting-

edge technologies and clinical applications. Deep learning 

methodologies, powered by increasingly sophisticated neural 

network architectures and augmented by expansive, diverse 

datasets, will underpin significant strides in accuracy and 

robustness. Real-time, point-of-care solutions will enable early 

disease detection and telemedicine applications, democratizing 

access to eye health assessments.
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The integration of multimodal imaging data will provide a 

holistic view of retinal structures, while personalized medicine 

approaches will cater to individual patient profiles, optimizing 

diagnostics and treatments. Collaboration between computer 

scientists and healthcare professionals will remain pivotal, 

ensuring clinically relevant and ethically sound AI solutions. 

Additionally, the field will grapple with regulatory and ethical 

considerations, establishing standards for AI-assisted 

diagnostics while safeguarding patient privacy. As retinal vessel 

segmentation advances, it holds the promise of revolutionizing 

retinal disease management, ultimately improving patient 

outcomes and reshaping the landscape of ophthalmic 

healthcare25-26.

CONCLUSIONS
In conclusion, retinal vessel segmentation methods hold a 

critical position in the field of medical image analysis and 

ophthalmology. These techniques are indispensable for the 

extraction and isolation of blood vessels within retinal images, 

thereby aiding in the diagnosis and monitoring of various eye 

diseases such as diabetic retinopathy and glaucoma. Over the 

years, the field has experienced significant advancements, 

particularly with the integration of cutting-edge technologies 

like deep learning. Nevertheless, challenges persist, including 

the necessity for large, well-annotated datasets and the demand 

for robust models capable of handling diverse image 

characteristics.

As technology continues its relentless march forward, retinal 

vessel segmentation methods are poised to assume an 

increasingly crucial role in early disease detection, treatment 

planning, and enhancing the overall quality of eye care. 

Continuous research and innovation in this domain are essential 

to further improve the accuracy and accessibility of these 

methods in clinical practice. Ultimately, these efforts will benefit 

patients and healthcare providers alike.
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ABSTRACT: In the present work, we propose a novel approach for medical image denoising process based on Gaussian
Quantum Behaved Particle Swarm Optimization algorithm and Total generalized variation of second order, in parallel with 
regularization estimation. We demonstrate the effect of regularization estimation alternatives on the denoising behavior and we 
evaluate the regularization operation by applying our proposed method TGV-GQPSO. The experimental outcomes show an efficient 
performance of the medical image denoising operation by applying our proposed approach, achieving a denoising performance ratio 
of 98.66%, in comparison with other experimental state-of-the-art image denoising methods for variable noise value during the 
filtering process. This work represents a novel medical image denoising method using the intelligent optimization theory for 
regularization estimation. This latter commands the behavior of the noise during the medical image filtering process and enhance the 
performance of the denoising operation in terms of image quality. The application of our proposed approach would be of great 
importance in real medical images since that the denoising process is essential in the subsequent analysis of medical image.
Keywords: Total generalized variation of second-order; Image filtering; Quantum particle swarm optimization with gaussian 
mutation; regularization estimation, Optimization issue.

INTRODUCTION
Image denoising is one of the fundamental challenges in the 

image-processing field, where the primary aim is to estimate the 

original image by suppressing noise from a noise-contaminated 

version of the image [1-3]. As an ill-posed inverse problem, 

image denoising is defined below:= + (1)

Where G is the original image and H is deemed the measured one, 

is the element of the equation that represents the noise-related 

information. Using regularization methods is essential to deal 

with the ill-posed issue [4-6]. The most known formulation of 

inverse problem regularization is demonstrated based on the 

following form:

min
u

F(u)+R(u) (2) ( ) s the fidelity term, which defines the difference 

between the estimated as well as the measured data, ( )  is

the regularization term. It is represented in the regularization

approach as ( ) where i s the  reg ularization par ameter of 

the equation.

Total generalized variation TGV is considered a modern concept 

of mathematical regularization [7-10]. It has several advantages 

over the classical total variation.

B.komander et al [11] investigated variational denoising using 

total variation penalties and gradient estimate of the image; they 

aimed to give a new interpretation of the TGV. Florian et al [12] 
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applied TGV for MRI images denoising and reconstruction. 

Thereafter, they compared   with performance. Their 

results demonstrate the advantages of  over classical .

K.Bredies et al [13] studied the application of in inverse 

problems with blurred and noisy data to confirm the solution’s

stability, In this context, those authors have discussed the choice 

of regularization parameter and its influence in terms of 

balancing the regularization term and the data fidelity term.

TGV method was applied in other image processing operations 

including medical image reconstruction, Shanzhou Niu et all [14] 

investigated the quality of CT reconstruction via TGV by 

introducing an optimization process.

Regarding optimization approach and bio-inspired algorithms, 

these methods are highly recommended also in image 

segmentation operations [15-18]. This framework has an 

effective performance in improving segmentation results.

Based on the aforementioned, we conclude that the regularization 

parameter estimation is critical during several image processing 

operations including the denoising process. In this paper, we 

investigate the impact of regularization parameter choice on the 

total generalized variation of second-order denoising based on

Gaussian Quantum Behaved Particle Swarm Optimization 

approach [19]. We present our intelligent algorithm 

TGVG_QPSO to estimate the highly significant stable value of 

the regularization parameter for the best performance image 

denoising operation.

The application of the aforementioned approach would be of 

great importance, particularly in real medical images. This is 

because the denoising process is essential in the subsequent 

analysis of the image and leads to an efficient diagnosis of 

pathologies experimented with by specialists. 

The remaining of this paper is organized as follows. In Section2, 

the Total Generalized Variation TGV method is introduced with 

the presentation of the Gaussian Quantum Behaved Particle 

Swarm Optimization algorithm GQPSO. In section3, our 

proposed method is presented. Experimental results are described 

in section4. Finally, the conclusion is represented as section5.

BACKGROUND

Total Generalized Variation

As previously stated the classical total variation   , can be 

defined as follows: ( ) = | u| dx (3)

On the other hand, the total generalized variation of second-

order  is expressed as a minimization problem following 

the equation below:( ) =  | u|dx +  | (v)|dx        (4) 

Classical    merely takes into account the first derivative 

contrary to  that gives the balance between the first and 

the second derivatives.  has many advantageous 

proprieties in comparison with classical TV [20-23]. With its 

application in medical images denoising [24-26]. Including; a 

well-developed mathematical theory, the convergence of 

values as well as the invariance of the method. All these elements 

allow    to exceed the classical approach of the total 

variation.

Gaussian Quantum Particle Swarm Optimization

Leandro dos Santos Coelho [11] proposed the gaussian quantum 

particle swarm optimization GQPSO approach as a combination 

of quantum particle swarm optimization and gaussian 

distribution. The classical particle swarm optimization is an 

intelligent algorithm that is based on computational simulation of 

organisms’ movements such as, flocks and birds. The state of the 

particle in PSO is defined by position and velocity [27]. The 

extension of quantum behavior presented in [28-30] allows PSO 

to work in different ways because the particle is depicted by a 

wave function. The new approach of QPSO combined with 

gaussian mutation shows efficient performance for reaching 

significant solutions if we compare it with both QPSO and PSO 

algorithms [31-33]. 

When we combine the concept of QPSO with operator mutation 

using Gaussian probability distribution, the particles move 

according to the following iterative equation: 

( + 1) = +   . | ( )| . ln 1   0.5  ( + 1) =  . | ( )| . ln , < 0.5, 
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(5) 

where is the contraction-expansion coefficient. G and K 

values are related to the probability distribution function range. 

The Mbest is a global point (mainstream thought or mean best) 

of the population. It represents the mean of the Pbest (Individual 

Best Solution) positions of all particles. It is defined as:

, ( ) (6) 

The best particle in the swarm is represented with g. The 

convergence concept is defined as:

 = ,  , , (7) 

where and are the acceleration coefficients.

PROPOSED MODEL
In Our proposed approach, we proceed in two steps:

Firstly, we study the influence of regularization parameter choice 

on image denoising using . The quality of image denoising 

can be evaluated by utilizing peak signal to noise ratio (PSNR), 

mean squared error (MSE), mean absolute error (MAE), and 

Structure Similarity Index Map (SSIM). In this research, we use 

PNSR and SSIM as criteria to compare the overall results. The 

computational simulation of  contains two regularization 

parameters ,  as defined in (8). In this respect, the choice 

of the values:  and ,  the amount quantified the difference 

between them, the relationship between the noise with the 

regularization parameter variations, and the estimation of and  relevant best values for each noise variation are discussed.( ) =   | (c)   (c)|  + | (c)   (c)|
(8) 

Secondly, we apply our TGVG_QPSO method (Table 1) to solve 

our optimization problem, which is defined as the choice for the 

regularization parameter to get the best image denoising quality. 

Our objective function chosen will be the one that relates , ,

and noise value all combined.

Table1. TGVG_QPSO Algorithm

1 Fixe GQPSO parameters d, n

2 Choosing lb,ub (lower and upper bound) values 

(related to value)

3 Fixe number of iterations, and constants c1,c2,w1,w1

4 Generate initial population 

5 Evaluate the objective function (Eq. 9 (1 or 2) for  
or )

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Initialize Pbest and Gbest

GQPOS main loop 

Iter = 1

While iter<iermax

Update position (solution to Mbest Eq. 6)

Check Bounds 

Update Pbest 

Update Gbest

Plotting the convergence results (fitness value 

/iteration)

End 

/// STEP2 TGV

Fixe TGV values (n, (  and as the fitness 

value))

Input : Original image 

Add Gaussian noise to the image  denoising function 

21 Output : Denoised Image 

RESULTS AND DISCUSSION
The Impact of the Regularization Parameter Choice 
on the Denoising Process

Our experimental approach is mainly composed of two sections. 

In the first section, the impact of the regularization parameter 

choice on the denoising process and its relation with the noise 

variation has been pinpointed. Fig. 1 Illustrates the variation of

peak signal to noise ratio with increasing regularization 

parameters and noise values. As clearly shown, there is one best 

solution of regularization parameter for best denoising quality in 

case of noise variation. And since our computational simulation 

of contains two regularization parameters  ,  , the 
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solution is deemed a combination of two values together.

Fig. 1: Peak signal to noise ratio variation with increasing ,

noise value [10%-50%]. 

The quantified amount difference between these two values: ,

has a significant impact on and the denoising behavior. 

In this regard, Fig. 2 represents Peak signal to noise ratio 

variation with and different gap values with noise fixed, it 

confirms that increasing the difference between the values: ,  leads to a completely different denoising process. 

Furthermore, denoising behavior can be affected as well by the 

fixation of one of the following values  , as demonstrated 

in both graphs shown in Fig. 3.

Fig. 2: Peak signal to noise ratio variation with and different 

gap values, noise fixed

(a)

(b)

Fig. 3: Peak signal to noise ratio variation with and different 

values, (a): fixed values, (b): fixed values

As matter of fact, there is a relation as well between the qualities

of the denoising operation with the noise variation. Fig. 4

illustrates the variation of PSNR with the regularization 

parameter that increased for a specific value of the noise. 

Consequently, the second section of this experimental approach 

aims to estimate the best solution for the regularization parameter 

using TGV_GQPSO. 
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Fig. 4 Peak signal to noise ratio variation with and and three 

different noise values

Regularization Estimation

Our objective function that defines the optimization problem 

is the fit relationship function between the regularization 

parameter: , and noise since it is considered the solution of 

the best performance of the denoising process. The objective 

function described below has been fitted after performing several 

tests.

= 370,6 + 0,2408.sin (0,5401.  .  . ) – 370,4. exp(-

(0,0401. )²) 

  =  0,2266 + 1,493.sin (0,1797.  .  . )

-0,000271.exp(-(- 0,1628. )²) (9)

We utilize (9) to calculate the best combination of regularization 

parameters using our proposed method TGVG_QPSO. MRI and 

CT images used are taken from Radiopaedia [34]; the frames are 

extracted and saved in TIFF format.  The Gaussian noise levels 

are [10%-90%]. The Regularization parameters values interval is 

between [0-1], our approach was performed using the following 

parameters values: number of iterations n = 100/500, dimension 

d = 2, Acceleration coefficients c1 = c2 = 1, inertia weights w1= 

w2=1.  

The main challenge of this study involved the determination 

of the objective function that represents the the fit relationship 

function between the two regularization parameters and the noise 

value, if the fit relationship is inappropriate. The denoising 

performance will be less efficient.

As shown in Table 2, the estimation of  for each particular 

noise value based on our proposed approach leads to a better 

denoising performance represented with PSNR and SS IM values, 

instead of choosing one random value of the regularization 

parameter.  Fig. 5 demonstrates the impact of the estimation on 

image quality using our TGV_GQPSO method in comparison 

with TGV . 

Table 2. PSNR and SSIM values of brain MRI image denoising with  and our proposed method _ , noise value [0.1-0.9]

T
G

V

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

PSNR 31.3747 23.3549 16.7162 12.7358 9.8991 7.8365 6.1108 4.7449 3.5922

SSIM 0.8733 0.3536 0.1435 0.0817 0.0511 0.0349 0.0252 0.0185 0.014

T
G

V
_G

Q
PS

O 0.21 0.24 0.29 0.35 0.44 0.55 0.66 0.79 0.91

0.23 0.26 0.30 0.36 0.43 0.52 0.63 0.75 0.88

PSNR 31.8902 28.1065 26.3551 24.3851 23.0344 21.9445 21.3598 20.8016 20.5170

SSIM 0.8942 0.8094 0.6499 0.5271 0.4332 0.4041 0.3685 0.3741 0.3468
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Fig. 5: Denoising of CT Brain image using and our proposed _  method. (a): Original Image, (b): Noised image (c):
Denoised image using TGV; (d): Denoised image using our proposed _ approach

Based on applying  TGV_GQPSO , we can provide the best 

solution for the regularization parameter choice and superior 

denoising performance through the optimization of the objective 

function (9). Fig. 6 proves the effectiveness of our TGV_GQPSO method in comparison with other state-of-the-art 

experimental denoising algorithms including Bilateral Filter, 

Total Variation TV, and ordinary Total Generalized Variation of 

second order TGV  . The denoising quality of our approach 

surpasses the aforementioned ones, including using TGV with 

particle swarm optimization PSO and Artificial Bee Colony ABC 

Algorithms for regularization parameter estimation as shown in 

Table 3 with the higher values of PSNR, SSIM and Denoising 

Performance Ratio (DPR). 

(c)                                    (d)
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Fig. 6: Denoising of MRI Brain image using our proposed algorithm and other different experimental denoising methods (a): Original Image, 

(b): Noised image (c):Denoised image using TV , (d): Denoised image using Bilateral Filter, (e) : Denoised image using TGV, (f) :

Denoised image using  method.

(c) (d)

(e) (f)
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Table 3. PSNR, SSIM and DPR values of MRI Brain image 

denoising using our proposed algorithm and other experimental 

methods, noise value 

Our TGV_GQPSO method gives the most accurate estimation of 

regularization Parameter choice despite any probable noise value. 

The expression of the denoising operation as an optimization 

problem provides effective results in the denoising process and 

image enhancement. The main advantage of our proposed 

approach is that it considers the noise information and employs 

the appropriate regularization parameters values for the best 

denoising performance. Future studies could examine several 

medical image-processing applications based on the same 

principle to improve the filtering and noise specifications for 

different medical imaging data.

CONCLUSION
We investigate in the present paper the impact of regularization 

parameter estimation on the performance of medical image 

denoising using our TGVG_QPSO approach based on a total 

generalized variation of second-order and Gaussian quantum 

behaved particle swarm optimization. Our intelligent algorithm 

is applied for estimating the best solution of regularization 

parameter choice with noise variation. The experimental results 

confirms the obvious effect on the medical images denoising 

process with the application of our proposed approach in 

comparison with other experimental state-of-the-art image 

denoising methods. This optimization-denoising process is 

efficient in improving medical image enhancement approaches 

including image restoration, reconstruction, and deconvolution.
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ABSTRACT: MRI brain tumor identification and classification is costly and time-consuming owing to the difficulty and 
complication of tumors. The process is highly influenced by the experience and knowledge of radiologists and neurologists. For 
this reason, automating this process becomes indispensable to overcome the drawbacks. In this work, we propose a new model, 
called DRB-BSIF (i.e., Deep Rule Based Classifier using Binarized Statistical Image Features), to enhance classification 
performances and reduce the complexity implicated in the diagnostic decision. Specifically, the tumor region is augmented by 
image dilation and used as the Region of Interest (ROI) instead of the initial tumor region. Then, features are extracted using 
BSIF image descriptor. Furthermore, we have constructed a Bank-BSIF, which is founded by the best parameters of BSIF filters. 
In the classification step, a deep-rule based classifier (DRB) has been used. The main of the BRD classifier is a self-organized set 
of IF and THEN fuzzy rules guided by the prototypes. These fuzzy rules are generated by DRB classifier and represented its 
‘engine’. We studied classification of different kinds of brain tumors (e.g., Meningioma, Glioma, and Pituitary tumor). The 
proposed model is evaluated on publicly available brain CE-MRI images via different measures such as performance accuracy, 
sensitivity and specificity. Experimental results demonstrated that the DRB-BSIF is effective and can be used in computer aided 
brain tumor classification.
Keywords: MRI brain tumor; region of interest; feature extraction; BSIF descriptor; DRB classifier.

INTRODUCTION
Nowadays, automatic tissue type classification of magnetic 

resonance imaging (MRI) is very necessary in computer-aided 

diagnosis. Early and accurate identification and detection of 

brain tumor are keys for implementing successful therapy and 

treatment planning. MRI is the most popular technique for 

identification and detection of brain tumors [1]. The most 

important advantage of MR imaging is that it is non-invasive 

technique. However, brain tumor classification is a tedious task 

because of the diversity and emergency of tumors, which relies 

on the experience and knowledge of radiologists. Moreover, 

supervised classification methods are inefficient and non-

reproducible for large amounts of data. Therefore, computer-

aided diagnosis tools are highly desirable to address these 

problems[2]. There exist several studies for MRI brain tumor 

classification using machine learning techniques. For instance, 

use of Fuzzy Clustering Means (FCM) [3], brain diagnosis based 

on fuzzy system [4], Support Vector Machine (SVM) [5],

Artificial Neural Network (ANN) [6] and Expectation-

Maximization (EM)  algorithm technique [7]. These techniques 

have been employed for segmentation and extraction of relevant 

information from the medical imaging modalities [1]. In 

particular, Zhang et al. [5] have proposed a method based on 

2023
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Principle Component Analysis (PCA) and SVM techniques for 

MRI brain tumor classification. The method first extracted 

features from images by using wavelet transform then reduced 

the dimensions of the extracted features by applying PCA 

technique. The reduced features were used as an input to a kernel 

of SVM to classify MRIs as normal or abnormal. This technique 

achieved an accuracy of 99.38%. While, Cheng et al. [8] have 

introduced a new method for classification of MRI images into 

different kinds of tumors. To increase the accuracy of the 

proposed method, the tumor region was augmented by image 

dilation and used as the ROI instead of the initial tumor region.  

This technique attained the accuracies of 82.31%, for intensity 

histogram, 84.75% for Gray-Level Co-occurrence Matrix 

(GLCM), and 88.19% for Bag-of-Words (BoW) model. 

In the other work, Shree et al. [1] have given attention to 

elimination of noise, which can occur, after segmentation by 

using morphological filtering technique. GLCM features and 

discrete wavelet transformation (DWT) were employed to 

enhance the performance of proposed method in [1]. Whereas, 

the probabilistic neural network (PNN) was used to classify MRI 

brain tumor images. Joshi et al. [9] presented a scheme based 

on the analysis of statistical structure of both normal and 

abnormal tissues for MRI brain tumor segmentation. Features 

were extracted by co-occurrence matrix, and then reduced to the 

only relevant component. An ANN and fuzzy c-means have been 

used for classification. Bahadure et al. [10] proposed Berkeley 

Wavelet Transformation (BWT) with SVM classifier. The 

technique in [8] achieved 96.51%, 94.2% and 97.72% accuracy, 

specificity, and sensitivity, respectively. 

Recently, deep learning has gained a lot of interest due to the  

advance in computational both hardware and software resources 

[11][12]. Several works have shown deep learning based 

methods outperforming previous state-of-the-art classical 

techniques in various domains, e.g., handwritten digits  

recognition [13],  object recognition [14], image classification 

[15] and visual recognition [16]. Many works also focused on 

using deep learning models for MRI brain tumor, segmentation, 

classification and identification, e.g., Pereira et al. [30] proposed 

an automatic segmentation method based on Convolutional 

Neural Networks (CNN). While, Naser et al. [31] used CNNwith 

U-net for segmentation. Ismael et al. [31] developed residual 

network-based approach for classifying brain tumor types from 

MRI images. Also, Angelov and Gu in [17] presented a Deep 

Rule Based (DRB) classifier. The DRB classifier achieved 

impressive results on different benchmark datasets 

outperforming some of the previous methods.

In this paper, we propose a new approach for classification of 

MRI imaging into different kinds of brain tumors. Multiclass 

classification is at times a tedious and challenging problem in 

comparison with binary classification (e.g.,  in pathological and 

non-pathological) [8]. The presented framework first extracts 

ROI from MRI brain images, which contains the main disease 

information. Then, BSIF descriptor is used to extract features 

from each ROI. This descriptor is very robust and gives best 

results in comparison with the state-of-the-art descriptors. 

Furthermore, to enhance the performance of the proposed 

system, the best BSIF features that attain higher performances 

are combined to construct a bank of BSIF filters. Later, the DRB 

classifier is applied to classify the given ROI of MRI brain tumor 

into different pathological types.

The rest of the paper is structured as follows. Section 2 presents 

the flowchart of the proposed approach, including the extraction 

of ROI method, feature descriptor and DRB classifier used in the 

proposed system. Validation process, data set and experimental 

results are discussed in Section 3. Conclusion and future work 

are presented Section 4.

ARCHITECTURE OF PROPOSED 
DRB-BSIF CLASSIFIER 
The flowchart of DRB-BSIF classifier is presented in Figure 1.
The framework contains four steps: 

Step 1: It consists of the segmentation and extraction of the 
ROI in the medical image, which is very important to 
improve the classification performance. 

Step 2: The features are extracted from the ROI using BSIF 
descriptor, which is detailed in section 2.2.

Step 3: The DRB classifier is applied to classify the given 
ROI of MRI brain tumor into different pathological types, 
which is presented in details in section 2.3.

Step 4: The final step consists of the decision maker, which 
decides the class label that tested image belongs to.   
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Fig. 1: DRB-BSIF Classifier Architecture

Extraction of the Region of Interest (ROI)

For medical images, the region of interest is the lesion area for 
doctors, which contains the main disease information. In this work, 
the procedure employed for the extraction of  the ROI  is same 
as used in [8]. The ROI extraction technique is as follows: first, the 
tumor region is augmented by image dilation and used as the ROI 
rather than the initial tumor region, because tumor-neighboring 
tissues can provide significant indications for the identification of 
tumor types. Second, the augmented tumor region is fragmented 
to progressively fine ring-form sub regions. Finally, we can apply 
a local feature descriptor to extract the features from the extracted 
ROI. 

Feature Extraction  

Good feature descriptor is important to produce satisfactory 
classification results [18]. Several local image descriptors are 
proposed in the literature, e.g., WLD (Weber Local Descriptor) [19]
[20], PHOG (Pyramid of Histogram of Oriented Gradients) [21],
LBP (Local Binary Pattern) [22], LPQ (Local Phase Quantization) 
[23] and BSIF (Binarized Statistical Image Features) [24].
Motivated by the success of BSIF technique in natural images 
classification and iris recognition [24] [25] [26], we intend to 
explore this technique in this work of MRI brain tumor 
classification.

Exploring Binarized Statistical Image Features (BSIF)

In this work, we have explored BSIF [24], which is a local image 
descriptor founded on LBP and LPQ techniques. In contrast to 
these methods, BSIF does not use predefined set of filters but 
learns the filters from natural images. These learned filters are used 
to describe each pixel of the ROI as a binary string, which 
corresponds to binarized responses of learned convolution filters. 
Further, the histogram of the pixels binary string values produces 
BSIF features describing efficiently texture proprieties of the 
image sub regions. A group of filters of patch size l × l are learned 
using input images and independent component analysis (ICA)  
[24][27]. Patch size l is given as:  l = (2 * n + 1),

Where n {1, 2...8}. The set of pre-learnt filters from natural 
images is used to extract the texture features from images. Suppose 
that an image is presented as I(x, y) and the filter is represented 

by h (u, v), where i represents the basis of filter, the linear 
response of filter s can be given as [24]:= ( , ) ( , ),                               (1)

Where x and y stand for the dimension of image and filter, 
respectively.  Hence, the response is binarized based on the 
attained response value. In this case, if the linear filter response is 
more than the threshold, a value of 1 is assigned, otherwise 0. This 
process is defined as:  = 1      > 0   0                              (2)

The obtained responses at different basis are used to construct the 
new gray code for the pixel value. Since the descriptors are 
constructed using the filters learnt through set of natural images, 
the response of the filters achieved is maximally independent in 
terms of statistical significance [24]. Descriptor being derived 
from the statistics of the image, the constructed feature set of 
image is termed as Binarized Statistical Image Features [27][24].
Finally, the BSIF features are obtained as a histogram of pixel’s
binary codes, which can efficiently describe the texture 
components of the MRI image. There are two essential factors into 
BSIF descriptor explicitly: the filter size and the length of the filter. 
Single filters with a fixed length may not be capable of 
generalizing well the brain tumor patterns with varying intensities, 
scale and orientations. Therefore, we propose to utilize high 
performing multiple filters with different scales in order to capture 
eminent features, thus the named bank of BSIF (B-BSIF), which 
are further detailed in the experimental section. Figure 2 shows an 
example of an MRI image and the results of BSIF filters 
processing. Figure 2a presents the input ROI MRI image. Figure 
2b illustrates the learned BSIF filter with a size 17 × 17 and of 
length 11 bits. While, Figure 2c depicts the results of the 
individual convolution of the ROI MRI image with respective 
BSIF filters. Figure 2d presents the final BSIF encoded 
feature/image.

Fig. 2: (a) Example of the MRI ROI image, (b) BSIF filter (17 x 17) 
length 11, (c) features by BSIF filter, (d) final result of BSIF

( a )

( b )

( c )

( d )
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Classification

There are various techniques proposed for classification of data. 
Motivated by the high classification accuracy achieved by the 
DRB classifier in [17], we explore it for the classification of MRI 
brain tumors. To the best of our knowledge, this is the first work 
to utilize this technique for MRI brain tumor classification. 

Deep Rule-Based Classifier for MRI Brain Tumor 
Classification

The advantage of deep rule-based classifier approach is that it 
combines two powerful and successful techniques that have 
proven their efficiently and highly accurate results in various 
image-processing problems [28][29]. However, these two 
techniques have a number of shortcomings and deficiencies that 
the DRB system benefits from. The first technique is the Deep 
Convolutional Neural Networks (DCNNs) that can achieve very 
high classification accuracy. However, the most important 
problem is that they require a huge amount of training data and a 
full retraining for images for new classes. They produce good 
results only when the images show similar properties with the 
training images, but they are not able to deal with uncertainties 
[28]. Furthermore, their parameters are usually unclear and not 
easily interpretable [30]. In contrary to the DCNNs, the second 
technique, traditional Fuzzy Rule Based (FRB) system, is an 
efficient approach to deal with uncertainties by offering a 
transparent and understandable structure. Nonetheless, they could 
not achieve high level performance as DCNNs due to their small 
internal structure [30][29][31]. Therefore, the DRB classifier 
combines the advantages of FRB system applied to image 
classification problem with the deep learning, which offers the 
concept of multi-layer Fuzzy structure. 

In this work, we have explored the FRB layer, which represents 
the “engine” of the DRB classifier and is based on the 
autonomously self-developing fuzzy rule-based models of the 
AnYa type [29]. AnYa represents a set of IF…THEN… fuzzy 
rules that are non-parametric and do not require the membership 
function to be pre-defined. Instead, they emerge from the data 
pattern automatically following the concept of Empirical Data 
Analytics. This layer contains two main processes (i.e., training 
process and generation of fuzzy rules). The process contains three 
stages (i.e., initialization, preparation and update of the system). 
Large dataset is used to train the DRB system. Once the training 
process is completed, every subsystem generates one fuzzy rule 
corresponding to its own class based on the identified prototypes. 
The fuzzy rules generated by our proposed system BRB-BSIF are 
represented in Table 9.

Different Steps of the FRB Layer

Step 1: Initialization

The system is initialized by the image of the Cth class by applying 
the vector normalization to the global vector Ic1, denoted by:

, = , , , ,……… , , where d is the dimensionality. , ,                                     (3)

The different parameters of the system are initialized as follows:

               
1; μ  ; 1; , , ; ,  ;  , 1; , ,

(4)

where K represents the current instance; μ is le global mean of 
the observed images of the cth class, P , is the mean of feature 
vectors of images related with the first data cloud with the 
prototype P , , S , is the number images related with the date 
cloud, and r , represents the radius of the area of the data cloud 
initialized by  r  , which is a small value to stabilize the new 
created data cloud.

Step 2: Preparation

For each image arrived Kth, k k+1 that represent the current 
time instance

For the Cth class, the vector normalization is applied to its 
corresponding feature vector and the global mean μc is updated by 
equation (5):μ    μ + ,                                    (5)

The data densities of all the identified prototypes are calculated as 
equation (6):( , ) =  ,  μ                             (6)

where  = 1 μ    due to the vector normalization 
operation.

Step 3: Updating System

In this stage, two conditions are checked:

The first one is checked to see whether the newly image Ick 
becomes new prototype and initialize a new data cloud by using 
Equation 8:

Condition1:  ( , > , ,……. ( , ))  ( , < , ,……. ( , ))         ,  is a new prototype             (7)

 +  + 1; , , ; , , ; , 1;  ,   (8)

Otherwise, the process finds the nearest prototype to I ,
denoted as P ,
In this case, the second condition is checked:

Condition 2:  ,  , < , ) 
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 ( ,     , )                (9)

If it is met, the new image is affected to the data cloud 
formed around the prototype P , - and the system updates the 
meta parameters of this data cloud as equation 10

, , + 1; , , ,  , +  , + , ; , , +
,                                                (10)

Otherwise, the system initializes a new data cloud by I ,  , which is considered as its new prototype 
(N  N  + 1)

Step 4: Fuzzy rules generation

After all the training data has been processed, the system will 
generate one Fuzzy rule based (Rulec) on each identified 
prototype.

                             ~ ,  …   ~ ,   (  )
(11)

Decision Maker 

In our work, 3 classes are considered, i.e., Meningioma, Glioma 
and Pituitary. For each image I in test, each one of the C fuzzy rules 
generate a score of confidence (I) based on the feature vector 
of I denoted by x:

, ,…,                   (12)

Finally, we can get three scores of confidences (I), (I), (I)
for each image, which represent the input to the last step ‘Decision 
Maker’. The system decides the label of the current tested image 
as follows:  ( (I)), ,                                    (13)

EXPERIMENT
In this section, we present an experimental evaluation of the 

proposed DRB-BSIF classifier based on Bank BSIF descriptor.

1. Database

The proposed model is evaluated on the publicly available 

brain T1-weighed CE-MRI dataset. This database was 

collected by Cheng et al [8] from Nanfang Hospital, 

Guangzhou, China, and General Hospital, Tianjing Medical 

University, China, from 2005 to 2010. Where, 3064 slices 

were collected from 233 patients, having 708 slices infected 

by Meningiomas, 1426 slices infected by Gliomas, and 930 

slices infected by Pituitary tumors. The images contained an 

original size of 512 x512 in pixels. Three examples are 

illustrated in Figure 3.

Fig.3: Illustrations of three typical brain tumors provided in the 
dataset [8]: (a) meningioma; (b) glioma; and (c) pituitary tumor. 

Red lines indicate the tumor border.

Performance Evaluation Measurements

To evaluate the performance of the classifier, three 
different metrics were computed, i.e., accuracy, 
specificity and sensitivity. The performance analysis is 
presented in Table 1 and Table 2. In Table 1 and Table 
2, TP refers to the true positive, which is the total 
number of abnormal regions correctly classified. TN 
stands for the true negatives, which is the total number 
of normal regions correctly classified. FP is the number 
of false positive, and it is used to indicate wrongly 
detected or classified abnormal cases. FN is the number 
of false negatives; it is used to indicate wrongly 
classified or detected normal cases. The accuracy is the 
ratio of total correctly classified  regions (TP+TN) and 
the total number of all examined regions [10].

Table 1. Confusion matrix in terms of TP, TN, FP, and FN
Expected 
outcome

Ground truth
Positive        
Negative

Row total

Positive TP FP TP + FP
Negative FN TN FN + TN
Column Total TP + FN FP + TN TP + FP + FN 

+ TN

Table 2. Metrics used for validation

Metrics Formula

Accuracy TP + TNTP + TN + FP + FN
Sensitivity TPTP + FN
Specificity TNTN + FP



112 

RESULTS AND DISCUSSION
Here, we report three different experiments: Experiment 1 – 

Construction of bank of BSIF filters, and Comparison between 

BSIF and B-BSIF, Experiment 2: Impact of feature descriptor 

used with the DRB-Classifier, and Experiment 3: 

Evaluation of DRB-BBSIF model for MRI brain tumor 

classification.

Experiment 1 – Construction of Bank of BSIF Filters
The goal of this experiment is to boost the accuracy of our 

system by constructing a bank of filters BSIF. In order to select 

the best BSIF parameters and respective filters, several sub-

experiments were performed and the results are reported in 

Table 3. We have explored different filters with different 

parameters (i.e., filter size (k) and filter length (n)). The 

parameters that achieve high performance have been selected 

and used to build the bank of BSIF (BBSIF).

These parameters are presented in Table 4, which are at this 

stage been fixed and used as estimated parameters for 

subsequent experiments. The model of the B-BSIF descriptor is 

illustrated in Figure 4, which represents an example using B-

BSIF. As can be noticed, the bank is composed of different BSIF 

descriptor sizes, i.e., 17 × 17, 15 × 15, 13 × 13, 11 × 11 with the 

length of 11 bits. This bank of filters is introduced as an input 

to the DRB classifier.

Fig. 4: The model of the B-BSIF descriptor: (a) input ROI of MRI, (b) results of applying the different BSIF descriptor (BSIF code images),
and (c) the histograms of the BSIF code images
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Table 3. All parameters of BSIF applied on the MRI brain

tumor

Table 4. Best BSIF filters

After the construction of the bank of BSIF filters, we attempt a 

comparison between the B-BSIF and BSIF descriptors. In Table 

5, it can be seen that the B-BSIF gives better results, the 

accuracy ranging from 84.30% to 84.73%, sensitivity from 

86.44% to 87.57%, and specificity from 83.66% to 83.87%.

Table 5. Comparison between BSIF descriptor and Bank BSIF

Experiment 2: Impact of Feature Extractor Methods 
used with the DRB-Classifier
In this experiment, we discuss the impact of using different 

feature descriptor methods with the DRB classifier.

Table 6 presents the results using different feature descriptors, 

including LBP, LPQ, WLD and PHOG with DRB classifier. It 

can be observed from table 6 that the B-BSIF descriptor used in 

the proposed method accomplished the best results with the

DRB classifier in term of accuracy, sensitivity and specificity 

compared with the popular and widely used descriptors. The 

different feature extraction methods tested in the current work 

are similar because all of them represent an image as a 

histogram of local features. The reason for this difference in 

their results is that they use different local features.

Table 6. Performance of feature descriptor methods with the DRB 

classifier

Method

DRB

With

LBP

DRB

with

LPQ

DRB

with

WLD

DRB

with 

PHOG

DRB 

with

BSIF

DRB

with

B-

BSIF

Accuracy 

(%)

73.99 77.15 75.78 79.31 84.30 84.73

Sensitivity 

(%)

57.77 74.72 64.97 74.29 86.44 87.57

Specificity 

(%)

78.86 77.89 79.03 80.81 83.66 83.87

Experiment 3: Evaluation of the DRB-BBSIF Model for 
MRI Brain Tumor Classification
The aim of this experiment is to study the performance of the 

proposed system. Table 7 shows the accuracy of the proposed 

system for each class. We also compared the proposed system 

DRB BSIF with k nearest neighbors (kNN) classifier as shown

in Table 8. As shown in Table 8, the DRB-BSIF gives best 

performance.

Table 7. Performance of feature descriptor methods with the DRB 

classifier

Meningioma Glioma Pituitary

Meningioma 620/708 33/708 55/708

Glioma 95/1426 1265/1426 66/1426

Pituitary 115/930 104/930 711/930

Accuracy 87.57 88.71 76.45

Table 8. Comparison of the DRB-BSIF with KNN

Method DRB-

BSIF

1NN 3NN 7NN 15NN 45NN

Accuracy 

(%)

84.73 80.01 81.69 83.14 83.37 83.09

Parameters Accuracy (%) Sensitivit

(%)

Specificity

(%)

k n17 × 17 12 81.79 85.88 80.5617 × 17 11 84.30 86.44 83.6617 × 17 10 83.39 85.88 82.6415 × 15 12 82.08 84.89 81.2415 × 15 11 83.71 85.59 83.1515 × 15 10 83.26 88.42 81.7113 × 13 12 81.89 84.04 81.2413 × 13 11 82.70 86.86 81.4513 × 13 10 82.25 86.86 80.8611 × 11 12 80.97 83.05 80.3511 × 11 11 82.60 85.03 81.8811 × 11 10 83.62 85.03 83.19

Parameters

17 × 17 1115 × 15 1113 × 13 1111 × 11 11

Feature 

descriptor

Accuracy 

(%)

Sensitivity 

(%)

Specificity 

(%)

BSIF 84.30 86.44 83.66

BBSIF 84.73 87.57 83.87
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Table 9. Fuzzy rules generated through the training process

Fuzzy Rules

( IF MRI~ ) OR ( MRI ~ ) OR ( MRI~ ) OR ( MRI~  ) 
   THEN

(Meningioma)

( IF MRI ~ ) OR ( MRI ~ ) OR ( MRI~ ) OR ( MRI~ )
THEN

(Glioma)

( IF MRI ~ ) OR ( MRI ~ ) OR ( MRI~  ) OR ( MRI ~ )

THEN

(Pituitary )

CONCLUSION AND FUTURE WORK
This paper presents a new approach for MRI brain tumor 

classification. The main goal is to classify three types of brain 

tumors (i.e., Meningioma, Glioma, and Pituitary). To this 

objective, four main steps are involved. The first step is 

extraction of region of interest. The second step is the extraction 

of features from each ROI traits using BSIF descriptor. 

Moreover, we have explored different filters with different 

parameters (i.e., filter size (k) and filter length (n)). The 

parameters that achieve high performance have been selected 

and used to build the B-BSIF features. These features have 

boosted the accuracy of our system.  In the third step, a deep-

rule based classifier (DRB) is used for classification.  DRB 

classifier is prototype-based natural process, which learns from 

data patterns and generates a fuzzy rule for each class in the 

same way as human. Finally, the system decides the winning 

class. A large dataset of T1-weighted CE-MRI brain tumors 

was used to test and demonstrate the effectiveness of the 

proposed method.  Also, we have demonstrated in the current 

study that good visual feature is crucial to produce satisfactory 

classification results. As a future work, we will extend the 

proposed method to identify and classify other types of brain 

tumors. In addition, we will explore and devise different feature 

extraction methods based on deep learning models.
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ABSTRACT:  Brain tumors are a common type of cancer that affects the central nervous system, and their accurate 
diagnosis is crucial. Deep learning models have shown remarkable success in medical imaging applications, including brain tumor 
classification from MRI images. Transfer learning, using pre-trained models as a starting point, is an effective technique for 
developing DL models for medical imaging. The study aims to validate the effectiveness of ensembling different pre-trained 
models to classify four categories of brain tumors; Glioma Tumor, Meningioma Tumor, Pituitary Tumor, or No Tumor. Also, the 
study aims to compare the performance of the proposed approach with individual pre-trained models. The method utilizes transfer 
learning with an ensemble approach for brain tumor classification from MRI images. The three pre-trained models used are 
ResNet50, EfficientNet, and MobileNet, with weights assigned to the ImageNet dataset. The pre-trained models are combined 
using a simple averaging ensemble method. We used 15% of the dataset for testing and the rest for training and validation. The 
performance of the ensemble method is compared with each of the individual pre-trained models using various evaluation metrics. 
The proposed approach achieved the highest accuracy (97.14%) and outperformed the individual pre-trained models in terms of 
most of evaluation metrics. Overall, the results show that the proposed method is effective for brain tumor classification from MRI 
images. In conclusion, our proposed approach based on the ensemble of ResNet50, EfficientNet, and MobileNet achieved superior 
classification performance compared to each individual model for the task of brain tumor classification. Our results validate that 
employing an ensemble of different pre-trained classifiers can be a valuable tool for improving the performance of medical image 
analysis, where accurate diagnosis is critical for patient treatment. 
Keywords: Brain Tumours; Medical imaging; Magnetic Resonance Imaging (MRI); Transfer Learning; Convolutional Neural 
Networks.

INTRODUCTION
Brain tumors are one of the most common types of cancers that 
affect the central nervous system. According to the American 
Brain Tumor Association, about 80,000 new cases diagnosed 
each year. Brain tumors can be classified into several types based 
on their origin, location, and histological characteristics. The 
most common types of brain tumors include Gliomas, 
Meningiomas, and Pituitary tumors. Magnetic Resonance 
Imaging (MRI) is a non-invasive medical imaging technique that 
provides high-resolution images of the brain. It is the preferred 
imaging modality for the diagnosis and monitoring of brain 
tumors. MRI images of brain tumors are complex, with variations 
in shape, size, and texture. Manual interpretation of MRI images 
is a time-consuming and error-prone task, requiring specialized 
training and expertise. Deep learning (DL) models have shown 
remarkable success in various medical imaging applications, 

including the detection and classification of brain tumors from 
MRI images. These models can automatically learn the relevant 
features from the images and classify them into different 
categories, providing accurate and efficient diagnosis. Transfer 
learning, which involves using pre-trained models as a starting 
point and fine-tuning them for a specific task, has become a 
popular technique for developing DL models for medical 
imaging. Several studies have reported the effectiveness of pre-
trained DL models for brain tumor classification from MRI 
images. For instance, a study by R. Hao et al.1, compared two 
versions of AlexNet, the first was trained from scratch and the 
second was the original pre-trained. The superiority of the pre-
trained version was demonstrated by showing an Area Under 
Curve score of 79.91%. Another study conducted by C. Srinivas 
et al.2, three pre-trained models have been evaluated VGG16, 
ResNet50 and InceptionV3. It has been denoted that VGG16 
achieved 96% of overall accuracy. M. Arbane et al.4 proposed to 

2023
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use ResNet, Xception, and MobilNetV2, and the latter achieved 
98.24% of accuracy. Another recent work by M. M. Islam et al.5

achieved the highest performance using MobileNet by injecting 
one fully connected layer to classify four types of brain tumors, 
reaching 99.60% of accuracy. The motivation behind this study 
is to develop an accurate and efficient DL model for the 
classification of brain tumors from MRI images info four 
categories: Gliomas, Meningiomas, Pituitary and the absence of 
tumors, by using an ensemble model that combines the output of 
ResNet50, EfficientNet, and MobileNet. This study will also 
compare and validate the effectiveness of our ensembling method 
against each of the used trained models; ResNet50, EfficientNet 
and MobileNet. The objective of this study is to propose a new 
ensemble learning approach that combines three pre-trained 
Convolutional Neural Network (CNN) models for the 
classification of brain tumors from MRI images. Specifically, we 
aim to classify the images into four categories: Glioma Tumor, 
Meningioma Tumor, Pituitary Tumor, or No Tumor. We will 
compare the performance of our ensemble model with the 
individual pre-trained models (ResNet50, EfficientNet, and 
MobileNet) to determine the effectiveness of our proposed
approach. Our proposed approach aims to achieve a higher 
classification accuracy than the individual pre-trained models, 
and, more precisely, demonstrates  the performance boosting

using ensemble techniques,  which would improve the diagnosis 
and treatment of brain tumors.

EXPERIMENTAL
The proposed method utilizes transfer learning with an ensemble 
approach for brain tumor classification from MRI images. Figure 
1 illustrates the general structure of our approach. We used the 
weights assigned to the ImageNet dataset for all three pre-trained 
models, ResNet50, EfficientNet, and MobileNet. A 
GlobalAveragePooling2D layer, which is a common choice for 
transfer learning, as it allows reducing computational cost of the 
pre-trained models, while also providing regularization benefits, 
followed by a Dropout layer with a rate of 0.5 to prevent 
overfitting, and then, an output layer with 4 units (corresponding 
to the number of classes) and Softmax activation function. The 
input of our model is an image of size 150x150 pixels and 3 color 
channels. The outputs of the three pre-trained models are then 
combined by a simple averaging ensemble method, taking their 
average as the output. We employed a total of 3264 images, with 
15% used for the unseen testing set and the remaining 85% 
divided into training (85%) and validation (15%) sets. We used a 
publicly available dataset, available in Kaggle platform3.

Fig. 1: Systematic overview of the proposed system

Table 1 shows the distribution of each of the four classes while 
Figure 2 exemplified one image sample of each class. To 
demonstrate the effectiveness of our proposed approach, we 
compare the performance of our averaging ensemble method 
with each of the three pre-trained models. We evaluate our model 

using various metrics such as Accuracy, Precision, Sensitivity,  
AUC, and Specificity. We used categorical cross-entropy as a 
loss function and Adam optimizer. Our ensemble model has been 
trained for 50 epochs. The model’s validation has been done 
using 5-Fold Cross-Validation using the same hyper-parameters.



118

Fig. 2: A sample of each of the four classes

Table 1. The number of samples count of the employed dataset

No Tumor Glioma Meningioma Pituitary

Image 
count 500 926 937 901

RESULTS AND DISCUSSION
After training our model in about 18 minutes, the aforementioned 
evaluation metrics (Accuracy, Precision, Sensitivity, AUC, and 
Specificity) were computed. Table 2 summarized all obtained 
testing results for ResNet50, EfficientNet, MobileNet, and 
Ensemble-based method. Our proposed approach based on the 
ensemble of ResNet50, EfficientNet, and MobileNet achieved an 
accuracy of 97.14%, which is slightly higher than the accuracy 
of each individual model. The ensemble approach also achieved 
higher precision, sensitivity, and specificity values than each 
individual model, indicating better performance across different 
evaluation metrics. However, the results have shown a slightly 
better performance of EfficientNet in terms of AUC metric. 
These results demonstrate the effectiveness of ensemble learning 
in improving the classification performance of pre-trained 

models on brain tumor images. It is important to note that the 
improvement in performance achieved by our ensemble method 
is relatively small compared to the performance of individual pre-
trained models. This was attributed to the fact that ResNet50, 
EfficientNet, and MobileNet are already powerful models with
high accuracy rates for image classification tasks (as shown in 
Table 3). However, even small improvements in performance can 
be significant in medical image analysis, where accurate 
diagnosis is crucial for patient treatment. We note as well for the 
cross-validation results, a small values of standard deviation for 
all metrics, and this is attributed to the model’s stability and 
performance consistency. Our results are also consistent with 
previous studies that have shown the effectiveness of pre-trained 
models in various image classification tasks. We introduced a 
simple averaging ensemble method to reduce possible 
overfitting, improve generalization, and increase the models’ 
robustness in handling different data variations.

Table 2. Summary of testing results for each of the pre-trained models, as well as the proposed approach.
Accuracy Precision Sensitivity AUC Specificity

ResNet50 96.53% 96.31% 96.65% 99.80% 96.65%

EfficientNet 96.93% 97.04% 97.19% 99.84% 97.19%

MobileNet 96.93% 97.01% 96.97% 99.48% 96.97%

Proposed 
Approach

97.14% 97.30% 97.42% 99.73% 97.42%
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Table 3. 5-Fold Cross-validation average results of the proposed approach (Average ± Standard Deviation).

Accuracy Precision Sensitivity AUC Specificity

Proposed 
Approach

98.6% ± 
0.07%

96.94% ± 0.095% 97.36% ± 0.11% 99.55% ± 
0.03%

97.36% ± 0.11%

CONCLUSIONS
In conclusion, our proposed approach based on the ensemble of 
ResNet50, EfficientNet, and MobileNet achieved superior 
classification performance compared to each individual model 
for the task of brain tumor classification. Our results validate that 
employing an ensemble of different pre-trained classifiers can be 
a valuable tool for improving the performance of medical image 
analysis, where accurate diagnosis is critical for patient 
treatment. As perspective, we aim to consider a larger dataset 
with model fine-tuning and then weighting each of the pre-
trained models to benefit from strengths of each of them in the 
ensemble approach.
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ABSTRACT: Automatic image segmentation is a crucial aspect of image analysis that has seen significant advancements 
and challenges with the emergence of machine learning algorithms. The effectiveness of a machine-learning model depends on 
its ability to produce results that closely resemble the ground truth image, and this is measured using various metrics. However, 
not all metrics are equally suitable for evaluating image segmentation especially with the presence of the class imbalance problem, 
which refers to the imbalance distribution of the classes with one or more classes having significantly fewer pixels than others 
where the segmentation focuses on infrequent classes and this can affect the accuracy and reliability of the evaluation metrics.
This study aims to determine the most critical metrics suitable for image segmentation, with a focus on medical images, using
some supervised machine-learning model for brain tumour segmentation and shows the negative impact of the class imbalance 
problem on the evaluation metrics. In this study, we propose a deep learning, support vector machine and random forest models
to segment brain gliomas from multi-modal MRI images to whole tumor, tumor core and enhancing tumor classes.. The metrics 
used are Accuracy, Dice-Score, Sensitivity and specificity. This method achieved a Dice score that varies between 0.35 and 0.95 
with sensitivity between 0.70 and 0.95 and specificity from 0.82 to 0.99 on all training, test datasets and all classes including 
whole tumour, tumour core and enhancing tumour. Despite this, the accuracy metric achieved 0.96 to 0.99 overall, which raises
concerns about its reliability in this context. In conclusion, this study highlights the importance of choosing the most appropriate 
evaluation metrics when assessing the performance of machine learning models for image segmentation, especially in the medical
field. Our experiments show that while the accuracy metric achieved highs scores, it may not be the most reliable metric to use 
in this context due to the presence of the class imbalance. The other metrics such as Dice-Score, Sensitivity and Specificity may 
provide a more nuanced and robust evaluation of model performance.
Keywords: Class imbalance; Metrics; Image Segmentation; Machine Learning.

INTRODUCTION
In computer vision, image analysis is the ability of computers to 
extract useful hidden patterns in the image scene for deeper 
context understanding. Image segmentation stands as a pivotal 
technique within the realm of image analysis it represents the 
process of dividing an image into a set of regions to identify and 
locate the objects that are in the scene. It is used in different 

domains like content-based image retrieval, medical imaging, 
robotics, real-time self-driving cars, video surveillance and 
automatic traffic control.1-2. Over the years, Automatic medical 
image segmentation has been a very competitive research3 field 
since the beginning of image processing technologies. 
Numerous approaches have been proposed, studied, and used. 
One can distinguish two categories of techniques: classical and 
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machine learning-based the classical techniques are those based 
on low-level pixel processing. They use the pixel values to detect 
contours like Canny, Laplacian detectors, or determine regions 
like the thresholding method, region growing algorithm
Machine-learning techniques represent a quantum leap in 
general artificial intelligence. They are free of rigid prior 
programmed rules. The core concept is to learn hidden patterns 
(features) from data and construct predictive models that can 
segment unseen data. The learning process can be either 
supervised or unsupervised. They are recently the most 
frequently implemented for automatic medical image 
segmentation. Unsupervised-learning algorithms are designed 
for unlabeled datasets. Clustering is a well-known technique in 
this category; it aims to group pixels or voxels into a set of 
unknown classes using similarity criteria like Euclidian distance. 
They are considered as optimization problems where the 
objective function is to maximize intra-class similarity and inter-
class dis-similarity. K-means and fuzzy c-means are popular 
algorithms in this context. Moreover, prior human expert 
knowledge is necessary to interpret the results correctly.  
Supervised techniques use labelled segmented data as training 
data to build the models.  In other words, the model takes the 
input data and the desired output during the training phase to 
produce results close to the desired outputs. There is a panoply 
of methods, such as K-nearest neighbors (KNN), Support Vector
Machines (SVM)4-5-6-7Random Forest (RF)8 and deep neural 
network (DNN)9.

However, this process in such a sensitive field is fraught with 
several challenges10, which encompass variations in image 
quality and acquisition due to diverse imaging technologies, 
anatomical differences among individuals, complexities 
presented by structures with ambiguous boundaries, the 
computational demands required to process large datasets 
efficiently and class imbalance issues that affect minority class 
segmentation.

The class imbalance is regarded as a reputed challenge that faces 
image segmentation with machine learning techniques11, It 
refers to a situation in which the distribution of the label classes 
is significantly imbalanced, this means that one class often the 
majority class is represented by a remarkably higher number of 
instances and predominate other classes which can impact the 
model learning process, leading to a highly biased model toward 
the majority class and a neglect of the minority class due to the 
difficulty to effectively capturing its feature. 

The class imbalance in medical images refers to the unequal 
distribution of pixels or voxels belonging to different classes or 
structures within the images where the minority class typically 
is the region of interest such as tumors and lesions which is the 
aim region of the segmentation process and the remaining areas 
such as normal healthy tissues and background as the majority 
class. This imbalance can markedly affect the learning process, 

potentially resulting a model that predominantly segments
normal and background pixels only (Fig 1).

Due to this issue, selecting metrics for evaluating machine 
learning model performance becomes challenging, because it 
highly influences metrics that heavily weigh the majority class 
or consider true negatives in evaluations, potentially yielding 
misleading results.

To handle this problem several solutions have been proposed 
such as data augmentation, oversampling, under-sampling, patch 
based segmentation and the appropriate choice of evaluation 
metrics to detect the correct performance of the model;
numerous works have focused on this last point to expose the 
most suitable evaluation metrics for image segmentation tasks 
12-13-14.

This study aims to exhibit the impact of the class imbalance 
problem on machine learning evaluation metrics in medical 
image segmentation in which we propose to perform a brain 
tumor segmentation using different machine learning models as 
deep learning, support vector machines and random forest.

Fig.1: Class imbalance

EXPERIMENTAL
Methods

In this work, we propose to segment a kind of the most life-
threatening primary brain tumors called gliomas from multi-
modal MRI images (T1CE, T1, T2, Flair) using a deep 
learning(DL) architecture, a support vector machine(SVM) and 
random forest(RF) models.

Our DL architecture is inspired from the well-known deep 
learning architecture used for biomedical image segmentation U-
net15, where we proposed a customized u-net used in multi-
pathway mode to deal with MRI modalities. Each image modality 
goes through a processing U-net pathway and before generating 
the final prediction map the final pathways results are merged or 
concatenated. The customized U-net is designed symmetrically as 
follows: the contraction path: also called the encoder path, consists 
of three levels each level is made of two consecutive (3*3)
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convolution layers of 16 learning filters doubled for each level, 
each followed by an Activation Layer with RELU function 
parameters, then the result (R) of these layers go through a (2*2) 
pooling layer followed by batch normalization layer and Dropout 
layer to prevent over-fitting. The expanding path: also called the 
decoder path, consists of three levels too each level is made of a 
transposed convolution layer, then a concatenation layer known 
also as skip connection between the two symmetric path where the 
result (R) is concatenated with the transposed convolution result 
to get more information, then a dropout layer and two consecutive 
(3*3) convolution layers each followed by an Activation Layer 
with RELU function parameters are applied. The paths are related 
between them by two consecutive (3*3) convolution layers each 
followed by an Activation Layer with RELU function parameters 
called a bridge. The final outputs of the expanding paths from each 
modality are concatenated and then the resulting map goes through 
a (1*1) convolution layer with a sigmoid activation function to 
generate the final prediction map Fig 2. 

Fig. : The parallel pathway architecture

For both SVM and RF we suggest using predefined scikit-learn
python models with a customized feature selection step. Feature 
extraction is a primordial step in this context, from the fact that 
each pixel has characteristics used for the discrimination between 
the tumour and the healthy pixels. For both SVM and RF a feature 
selection step was performed naively, the first main feature was 
the image pixel intensities in addition to a texture feature 
computed using Gabor filter and some edge features computed by
Sobel, Roberts, Canny, Scharr, prewit Gaussian and median 
kernels.

DATASETS

The Data sets used in this work are the brain tumor segmentation 
training 2020, 2018 release (BRATS2020) which contains a set 
of MRI images of 369,288 patients respectively diagnosed with 
high-grade gliomas (Glioblastoma) and low-grade gliomas. 
Each patient has four MRI modalities images: native pre-
contrast (T1), post-contrast T1-weighted (T1c), T2-weighted 
(T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR). In 
addition to the manual segmentation file where all pixels were 
segmented into four classes with four rates (0, 1, 2, 4) 
summarized in Table 1, All Brats multi-modal scans are pre-
processed: co-registered to the same anatomical template, 
interpolated to the same resolution (1 mm3ˆ) and skull stripped .
Table 1 expose the data information.16-17-18

Table 1. BRATS 2018/2020 releases training sets information

BraTS_2018 BraTS_2020

Gliomas grade HGG & LGG

# of patients 285 369

Modalities T1, T1CE, T2, FLAIR

Dimension (240,240,155)

Format Nifty (Nii.gz)

Ground truth Available in seg.nii.gz file

Labels

0 =background and healthy tissue

1= Necrotic /non-enhancing (NCR/NET).

2= Peritumoral edema (ED)

4 =Enhancing tumour (ET)

Implementation

To simplify the work and avoid the multi-class segmentation 
problem the BRATS challenge organization propose to use new 



123 

classes instead those in Table 1 and perform binary segmentation 
for each class separately then merge the final results. The new 
labels are as follows:

Whole Tumor: group labels(1,2,4) into 1

Tumor Core: group labels (1,4) into 1 and the
remaining classes to 0

Enhancing Tumor: turn label 4 into 1 and the
remaining classes to 0

Our Deep Learning model was implemented using Python3 with 
the Keras library. The experiments were run on the UB2-HPC

(University of BATNA 2-Algeria-) GPU node which contains 
4 Nvidia GPUs configured with CUDA 10.0 and CuDNN 5.6.7. 
The Brats 2020 training dataset was split randomly into Train set 
80% and Valid set 10% and Test set 10% with 42 random states. 
The model is trained over the Train set and to prevent over-fitting 
the Valid set is used, finally, the built final model is tested over 
the Test set.

For each class a DL model is trained over 2D MRI images in the
axial view each cropped from (240,240,155) to (160,160,128) 
with the following indices [40:200,40,200,12:140] the slices are 

organized as follows:

Each slice in Each modality must be from the same
patient and the same index to respect the parallel 
pathways inputs

The slices in the same modality are charged as follows:
each index slice is charged from all patient’s files to 
guarantee the perfect data shuffle

The final Network parameters are in Table 2. 

Table 2. Deep Learning Architecture Parameters

In the case of SVM and RF, we suggested using BRATS 2018 
training data of 285 patients splited to 80% as a training data and
20% as a Test set and due to limited available resources and high 
memory consumption from SVM and RF; we customized both 
of datasets as follows: 

Each modality and ground truth were cropped from
(240,240,155) to (128,128,30) with the following 
indices [56:184,56:184,sl-15:sl+15] where sl is the 
index of the slice in the ground truth which contains 
the maximum non zero pixels(or the large tumor 
region)

The models were trained over the axial view only

RF and SVM were implemented in python using numpy, opencv 
and sklearn libraries, the configuration parameters for each 
model are:

SVM: the Stochastic Gradient Descent (SGD)
classifier was used with Radial Basis Function (RBF) 
kernel approximation RBFSampler and maximum 
number of iterations set to 10000,n_job set to -1 for 
parallel CPU cores execution and class weight set to 
Balanced to address the class imbalance problem.

RF: The Random Forest Classifier was used with a
number of estimators set to 10,n_job=-1 -
1,class_weight set to Balanced and max_samples set 
to 0.2 and Gini impurity criteria.

Evaluation Metrics

Evaluation metrics are quantitive measures used to assess the 
performance and the effectiveness of machine learning models.
They are frequently computed based on the confusion matrix
(Fig 3). 

Fig. : Confusion Matrix

Parameters Values

Views Axial

Initial filters N° 16

Batch size 16

Dropout rate 0.4

Optimizer Adam (default)

Epochs 100

Loss function Dice Loss

Model checkpoint Active

Early stopping Active (patience epochs=20)
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The evaluation metrics19-20 used in this work are: Dice Score, 
Accuracy, Sensitivity and specificity. These metrics, except 
accuracy, are widely used in the context of image segmentation 
and highly recommended to address the class imbalance 
problem because of their focus on the infrequent classes; 
however, traditional metrics like accuracy are still used and can 
be misleading in imbalanced datasets. A model might achieve 
high accuracy by simply predicting the majority class or the 
healthy tissue and background pixel and this, which is proved 
through these experiments

Dice Score: one of the primmest pixel level metrics, used to 
evaluate the quality of image segmentation, it measures the 
overlap between the prediction map and the ground truth, it cares 
only for true positive pixels.= | || | | | =                           (1)

Accuracy: measures the proportion of true negative and true 
positive pixels that are correctly predicted compared to the 
ground truth.=                                 (2)

Sensitivity: measures the proportion of true positives pixel that 
correctly predicted comparing to the ground truth=                                (3)

Specificity: measures the proportion of true negative pixel that
correctly predicted compared to the ground truth. =                                (4)

WhereA and B refers to the prediction mask and the ground truth 
respectively.TP, FP, FN, TN are the number of: True positive 
pixels , False positive pixels, False Negative pixels and True 
Negative pixels respectively.

RESULTS AND DISCUSSION
Table 3 and Table 4 exhibit the summary results of the models 

on the training and test set respectively.

A large panoply of metrics is used for the performance 

evaluation of the Machine Learning models. Still, there are 

some constraints because they are not all suited for all tasks 

where each task may require specific metrics; for example, in 

this work, which tackles the image segmentation problem, we 

proposed using Dice score, Accuracy, sensitivity, and 

specificity. From the exhibited results in Table 1, we can see 

the accuracy is always 99%; however, the Dice varies between 

35% to 90%. The Dice score considered as a similarity 

measure which measures the overlap between the predicted 

map and the ground truth, it depends on the true positive pixels 

only which are the objective of the segmentation or the wanted 

area of interest, that represents the tumour area in our case but 

the accuracy is the percentage of pixels in the image that are 

classified correctly, it depends on the true positive and true 

negative pixels, in this study the true negative pixels represent 

the healthy tissue and the background, which is the large class 

in term of pixels that dominate the image that is why accuracy 

is near to 100% and this is due to the class imbalance, the gap 

is highly noted in the SVM and Random forest model, where 

there is a significant difference between the accuracy and the  

Dice coefficient and this raises concerns about its reliability 

and precision which justify that is not adaptable for such 

problem because high accuracy does not imply high model 

segmentation ability. As we mentioned previously that dice 

score focuses on true positives only which is the infrequent 

class and penalize false positive which makes it more sensitive 

and suitable metrics for this kind of tasks and a good solution 

for the class imbalance problem. [8]. For the sensitivity and 

the specificity, as we previously mentioned, sensitivity refers 

to the proportion of true positives that are correctly segmented 

compared to the ground truth, which is, in our task, the rate of 

indeed predicted tumorous pixels. Inversely, specificity refers 

to the proportion of true negatives that mean the proportion of 

pixels that are predicted healthy and background exactly like 

the ground-truth, both metrics works with one class separately 

so they are not affected by the class imbalance. They are 

adaptable for this task. They evaluate the model's capability in 

detecting tumorous pixels and healthy ones, respectively.

The limitation of this study is attributed to the use of a limited 

number of evaluation metrics. As future directions for this 

work, it is recommended to consider alternative solutions, 

including the exploration of a broader range of evaluation 

metrics, as well as the implementation of techniques such as 

under sampling and patch-based segmentation to effectively 

address this challenge.
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Table 3. The training Results of the brain tumour segmentation

Models DL SVM RF

Classes WT TC ET WT TC ET WT TC ET

DICE 0.95 0.90 0.87 0.65 0.47 0.37 0.75 0.55 0.37

ACC 0.99 0.99 0.99 0.98 0.97 0.99 0.98 0.98 0.97

SEN 0.95 0.89 0.86 0.71 0.78 0.79 0.75 0.78 0.81

SPEC 0.96 0.98 0.99 0.82 0.84 0.90 0.85 0.88 0.90

Table 4. The test results of the brain tumour segmentation

Models DL SVM RF

Classes WT TC ET WT TC ET WT TC ET

DICE 0.91 0.88 0.85 0.66 0.46 0.35 0.74 0.50 0.34

ACC 0.99 0.99 0.99 0.98 0.97 0.99 0.98 0.98 0.97

SEN 0.90 0.85 0.83 0.70 0.78 0.82 0.73 0.72 0.81

SPEC 0.98 0.99 0.99 0.82 0.84 0.91 0.85 0.87 0.90

CONCLUSIONS
In this research, we examined the common issue of class 
imbalance in medical image segmentation. Our study focused on 
illustrating the adverse effects of this imbalance on various 
evaluation metrics within the context of machine learning 
models. Furthermore, we underscored the significance of 
carefully selecting suitable evaluation metrics when gauging the 
performance of machine learning models in image segmentation. 
This involves taking into account the influence of class 
imbalance to ensure the accuracy and dependability of results in 
image segmentation tasks.
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ABSTRACT: To fully benefit from the precise dose delivered during hadrontherapy treatment, in-vivo dose monitoring 
methods are required. The activation caused by the beam in tissues can be detected by Positron Emission Tomography (PET) 
scanners and hence dose monitoring. Oxygen ion beams are programmed to be introduced into clinical practice due to their 
potential for treating hypoxic tumors. The PET scanner performance has already been tested in-vivo during proton and carbon 
treatment sessions. In this work, we will focus on the performance of the PET scanner as a monitoring system during 0xygen 
(16O) ion treatments.  Monte Carlo simulation with Particle and Heavy Ion Transport Code System (PHITS) code was 
performed to predict the possible positron emitters that can be created in soft tissue during 16O irradiation. The 11C, 15O, 10C and 
13N are also among the most important positron emitters created isotopes. Because of its short half-life, and production intensity, 
15O is the best-adapted positron emitter for PET imaging that may guarantee a short scanning time. Very short-lived positron 
emitters such as 12N (T 1/2 = 11ms) can be adapted for milliseconds scanning.
Keywords: Ion therapy; Radiation dose; PET scanning; Monte Carlo simulation.

INTRODUCTION
Ion beam therapy is an advanced type of external beam 
radiotherapy that takes advantage of the useful interaction 
features of heavy fast ions in matter, particularly their short
range and maximum dose deposition in depth known as the 
Bragg peak1. In compared to the frequently used photon 
therapy, ion beams can provide steeper dose gradients which 
allow conformal tumor coverage while sparing surrounding 
normal tissues. Additionally, heavier ions such as carbon offer 
added biological advantages because they exhibit a specific rise 
in ionization density as they approach the end of their 
penetration range. This leads to a distinctive boost in relative 
biological effectiveness (RBE), which can amplify the 
destruction of cancerous cells within the tumor while

preserving the integrity of adjacent healthy tissue, all while 
maintaining the same physical dose deposition in the tumor2.
However, full exploitation of these physical and biological 
advantages in clinical applications, it is essential to have a
comprehensive understanding of the precise location where the 
ion beam stops within the patient's body. Hence, in vivo 
delivered dose monitoring systems are required.
Positron-emission tomography (PET) can be utilized to monitor 
ion beam therapy involving both lightweight (protons, helium..) 
and heavier ions (carbon, oxygen..) by reconstructing the 
distributions of positron-emitting substances through 
simultaneous detection of gamma rays generated during 
annihilation events occurring in opposite directions 3.
During the irradiation with ions beams, a mixture of positron 
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emitting isotopes with different half-lives is produced .The 
spatial distribution of activity does not correlate with the 
administered dose, as dose deposition and the generation of 
beta activity result from distinct physical processes.
Consequently, the expected distribution of positron emitters 
must be computed using a Monte Carlo (MC) simulation based 
on the treatment plan4. MC simulations play a crucial role in 
evaluating the quality of treatment.
Simulation using Monte Carlo method and PHITS code was
performed to predict the possible positron emitters that can be 
created in soft tissue during 16O irradiation.
Because of its short half-life, and production intensity, 15O is 
the best-adapted positron emitter for PET imaging that may 
guarantee a short scanning time. 

METHODS AND MATERIALS
PHITS (Particle and Heavy Ion Transport Code System) is a 
multipurpose 3D Monte Carlo code that simulates the transport 
and interaction of most particle species over wide energy 
ranges eV– 1 TeV) using theoretical models and nuclear 
data files. PHITS has proven to be very useful in a wide range 
of research fields, most notably medical physics5. PHITS is
benchmarked for Bragg curves and deposit energy of 1H, 4He, 
12C and 16O beams ions beam6 and has been validated for a 
variety of experiment cases including particle production in 
heavy ion reactions7.

In this study, a phantom representing a soft tissue target of 
40x40x40 cm3 dimension is irradiated by a mono-energetic 16O 
ions beam. This Soft phantom has a density of 1g.cm-3 and it is 
composed from: 76.2% O, 11,1% C, 10.1% H, and 2.6% N.
The 16O ions beam energy is chosen at 260 MeV/u, 
corresponding to a range of around 10 cm. The most important 
positron emitters isotopes created in soft tissue during 16O 
irradiation are computed. The maps of spatial distribution of 
16O dose and 15O fluence are showed.

RESULTS AND DISCUSSION
1. Positron emitters’ production 

During the irradiation of the phantom with 16O ions beams, the 
most abundant  positron emitting isotopes, with different 
half-lives, are 11C (T ½ = 1222.8 s), 15O (T 1/2  = 121.8 s), 13N
(T1/2 = 597.6 s) and 10C (T 1/2 = 19.3 s). Figure1 shows the 
fluence of the main positron emitters during the interaction of 
16O ions of energy 260 MeV/u in the soft tissue phantom as 
predicted with PHITS. Statistical uncertainties are below 1%. 
The fluency of the 15O positron emitter radioisotope is higher 
than the other radioisotopes; usually it is the dominant 

radionuclide. 15O can be the best-adapted positron emitter for 
PET imaging that may guarantee a short scanning.

Fig. 1: Fluence of the main positron emitters during the

interaction of 16O ions of energy 260 MeV/u in a soft tissue phantom

2. Spatial map of 16O dose and 15O fluence 

In this section, we conducted calculations to determine the 2D 
spatial distribution of energy deposition by 16O ions interacting 
with a soft tissue phantom at 260 MeV/u. The beam exhibits a 
cylindrical shape, characterized by a diameter of 2 cm. 
Furthermore, we computed the spatial distribution of the 
fluence of 15O secondary ions. Figure 2 displays the outcomes 
of these simulations.
Mapping the production of 15O during 16O ion therapy, 
alongside in-beam PET imaging, can provide valuable insights 
into the spatial distribution of deposited energy within the 
patient's body. In addition, the flux of 15O ions produced also 
exhibits a significant decrease just before reaching the Bragg 
peak. This phenomenon offers an improved correlation 
between the depth distributions of activity and dose, which 
enhances the effectiveness of range monitoring.
Ideally, in-beam data should be analyzed in real-time to enable 
the cessation of treatment if substantial deviations from the 
treatment plan are detected. Very short-lived positron emitters 
such as 12N (T 1/2 = 11ms) can be adapted for milliseconds 
scanning. Advancements in rapid electronic systems and 
ultrafast scintillating crystals lead to reduced signal acquisition 
time and enhanced image quality.
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Fig. 2: 2D spatial distribution of 16O dose and 15O fluence

CONCLUSIONS
The study presented in this work served as a foundational 
proof-of-concept investigation with the goal of assessing the 
viability of utilizing 15O production as a target for in-beam 
monitoring applications involving positron emission 
tomography (PET). The primary aim was to enhance the 
precision of verifying 16O treatment plans and verifying the 
range of the treatment. To achieve this objective, we conducted 

Monte Carlo simulations, specifically utilizing the PHITS code, 
to predict the potential generation of positron-emitting 
substances within soft tissue when exposed to 16O irradiation. 
Among the various options considered, 15O emerged as the 
optimal positron emitter for PET imaging due to its remarkably 
short half-life and high production rate, which enables rapid 
and efficient scanning procedures.
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ABSTRACT: The RGB color model allows displaying millions of different colors in digital screens like those of monitors, 
televisions, smart phones, cameras, etc. It is based on combination of three colors (red, green, blue) making easy expression of 
colors with vectors. The YUV model is another color space defined by three components, the luminance Y (grayscale part of the
signal) and the chrominance, U and V. This paper deals with watermarking color and grayscale images, especially medical images. 
Watermarking a medical image is imbedding invisible patient data in the area of interest,   to prevent loss or falsification of 
them after transferring the image. The extraction of the mark will allow retrieving these data without changing important parts of 
the host image, to avoid distortion of the medical diagnosis. For this, we have used matrix transformations of order three. The 
first algorithm transform the RGB color cube into an infinite family of parallelepipeds and the second transforms YUV model 
into an infinite family of  same type model. In each case, a benchmark is applied for testing robustness. 
Keywords: Color model; YUV model; Grayscale image; Transformation domain; Watermarking.

INTRODUCTION
With the rapid development of internet and digital technology, 
the digital media can be perfectly copied without the owner's 
permission, easily modified and instantly distributed over 
internet. Protecting the copyright of the digital media is therefore 
an important topic. As a result, techniques of watermarking are 
currently used for the copyright protection and have nowadays 
received considerable attention. 

Watermarking a digital image, or another medium like audio or 
video, consists of embedding an image or a message, called 
watermark, in an image, called cover image or host image. Some 
applications need a visible watermark like a logo, while others 
need an invisible watermark. The watermark should be robust, 
i.e. it must be difficult to remove and despite attacks, it still can 
be extracted and identified. Moreover, it must not affect the 
quality of the cover image and must be unambiguous when 
extracting it.

An important bulk of research work has been published in this 

area. Watermarking techniques are now usually classified into 
spatial domain methods and transform domain methods. Spatial 
domain methods1-5 are less complex but not robust against 
tampering and attacks 6-9. The watermark is embedded into the 
host image by directly changing the colors of some pixels in the 
host image. The Least Significant Bit (LSB) methods are 
currently used because of their simplicity. The transform domain 
methods10-16 are more robust but are time consuming. A 
mathematical transform is applied to the host image, the 
watermark is then embedded into the transform coefficients and 
finally the inverse transform is applied to get the watermarked 
image. The watermark is placed in the most perceptually 
significant components of the transform domain. To insert an 
invisible and robust watermark into the host image, the human 
visual system (HVS) model should be exploited to perceptually 
determine significant regions of the host image17-21. For 
example, the blue component of an RGB image is well suited for 
watermarking and so is the Y component in YIQ and YUV 
models. The most frequently used methods are the Discrete 
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Cosine Transform (DCT), the Discrete Fourier Transform (DFT) 
and the Discrete Wavelet Transform (DWT), and recently the 
Singular Value Decomposition (SVD)22-29. SVD is used as a 
different transform and many papers combine SVD with DCT or 
DWT.

This paper is organized as follows. Section I defines a general 
watermarking scheme to be used in subsequent sections. In 
Section II, we define the matrix transformation of the RGB color 
cube into an infinite family of RGB color parallelepipeds, 
representing a scaling followed by a translation. In Section III,
we define an infinite family of matrices that are analogous to 
YUV. 

The embedding and extracting algorithms are subject to many 
tests in results and discussion section.

We get the watermarked image iw by applying in each case 
linear interpolation to i and w, that is iw = (1-t) w + t i where t 
controls the embedding strength. 

EXPERIMENTAL
The general watermarking scheme

Fig. 1 shows an embedding scheme where Ti, Tw and Tiw are 
invertible matrices with order 3 or 4 (homogeneous coordinates), 
depending upon the algorithms explained in the following sections. 
For each pixel (r,g,b)t in i, we get the pixel ( , , ) = ×( , , ) if Ti is of order 3 and  ( , , , ) = ×( , , , 1) if Ti is of order 4. The same holds for Tw and Tiw. By
applying linear interpolation with parameter t, we get   =(1 ) + . Finally, the watermarked image is given by:  =  =  (1 ) +   =  ((1 ) + ) , so =  ( ) + )                  (1)

The extraction process is depicted Fig. 2. iwa is iw after an attack, 
wTi is wT “watermarked” with iwT using linear interpolation with 
same parameter t, and waT is  wTi after “extraction” of iwaT that 
is given by: = (1 ) +  and =  +   . We get the modified watermark  = . Then, we deduced easily the following:= + ( ) , where  =   , so= + ( ) ( )                  (2)

In the following sections, we study two transformations: the first 
one is a matrix of order 4 representing a scaling followed by a 
translation and the second one is analogous to YUV. 

In figures 1 and 2, the transformations  Ti, Tw and Tiw must be 
different otherwise = (1 ) +  and 

 = +  (  )  become respectively  = ( ) +  and  = +  , then T is not 

needed. For this reason, we must build three different matrices for 
each method (RGB and YUV).

Fig. 1: Embedding the watermark

Fig. 2: Extracting the watermark

Transformation of the RGB color cube into a 
parallelepiped 

We get the transformation of the RGB-color cube = [0,255] ×[0,255] × [0,255] into the parallelepiped = [ , ] ×[ , ] × [ , ], with > , >
, > by using  linear interpolation, that is =  ,=  , and  =  Let = , =
and  =  . Then ( , , , 1) = × ( , , , 1) , where:

= 00 0 R0 G0 00 0 B0 1 .

Without loss of generality, suppose that = ( , , , , ) 
represents any one of ( , , , , ) , ( , , , , )   or ( , , , , ).

Let i be the host image, w the watermark and iw the watermarked 
image. The transformations of these images will be represented by 
the sets , , , respectively. If we consider the quadrangle 
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, , ,  , we get by bilinear interpolation =(1 ) +  , =  (1 ) +   , = (1) +   and = (1 ) + =  
so 

that = (1 ) +  R .

Transformation of an image from rgb color space to 
another yuv color space

Any color which was represented in rgb-color cube is now 

represented in another color space, like YUV,  YIQ, etc,… We 

suppose here that any triplet (r,g,b)t is transformed into  ( , , ) = × ( , , )  where T is a 3 3-matrix which is 

calculated later. Any 3 3-matrix can be obtained, provided that the 

final results are images (like the watermarked image iw or the 

extracted watermark wa) that have pixel values (that is values in [0,255]). 
A. Preliminaries

Let T be the set of the 3 3 – matrices T(a,b,p,q) such that (a, b, p, q)
= a         bpa         pb 1 a b   p(a + b)q(1 a) qb q(1 a b) , , ,   0. 

The determinant of T is bpq, so, since , ,   0, T is invertible 

and its inverse is given by:

= 1 0 1/q1 (1 a b)/(pb) a/(qb)1 1/p 0
Suppose now ( , , , ), ( , , , )   . We get an 

invertible matrix given by:

 =
x1 y1 1-x1-y1

c+cx2-(1-c)y2 d+dx2+dy2 1-c-d-(c+d)x2+(1-c-d)y2
x3 y3 1-x3-y3

,

where:

= ( ) +  , = + ,

 =  –  1  , = ,

= + = + .

Let ]0,1[ and ]0,1 [, then:

1 , + , + ]0,1[
0 < 1 + < 1 < 1

0 < < <                   (3)               

We have = and y1 = = ( ). Note that:

  0 . Analogously, = ( ) and = and   0.

The initial set of equations for L-1M is then: ]0,1[ ,  ]0,1 [
=  ( ) , =

=  , = , = ( )
= ( ) + ( ) + 1                               (4)

A matrix is said to be strictly positive if all its elements are strictly 

positive.

B. Choosing the parameters in  L(a,b,p,q) and  M(c,d,r,s) T

so that is strictly positive.

For the first line, we must have > 0, > 0, 1 >0 , and = ( ) .

The same is deduced for the third line: we must have > 0 , > 0, 1– – > 0 and  =  ( ) .

For the second line and according to the choice of c and d and the 

inequalities (3), the inequalities  +   – (1– ) >0, + + > 0 , and 1– – – ( + ) +(1– – ) > 0 are represented by the interior of a triangle. 

Using bilinear interpolation, any point N2 in this area has 

coordinate:
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 =  ( ,  ) =  (1 – )  +  ((1 – )  +  ), , ]0,1[
The set (4) of equations for L-1M strictly positive become:]0,1[ ]0,1– [ 

1 = – ( – 1)1– , ]0,1[,  
( , )  =  (1– )  + ((1– )  +  ), , ]0,1[ =  ( ) , ]0, [

= –1–
= ––  

 = (1– ) –  
 =  –( )  + ( )  +  1                      (5)

We say that a matrix M is a nearly identity matrix if [non-diagonal 

elements of M] 0 and [diagonal elements of M] 1.

C. Transforming an image i using a strictly positive and nearly 

identity matrix L-1M

Let  =  . If (r,g,b’)t is a pixel color in i and (R,G,B)t the 

corresponding pixel color in I (we say b’ instead of b which is an 

element of L), then =    +     +  (1– – ) ’,  =  (  +   – (1– ) )   + (  +   +  )  +  ((1– – ) – ( + )  + (1– – ) ) ’,  =    +    +  (1– – ) ’. 
Our aim is to choose the parameters so that i and I are “visually 

similar”, that is R r, G g, B b’. is then a nearly identity 

matrix of order 3 which implies easily 1,  0,  + +  2 1, then 0 and arbitrary. 

D. Choosing L(a,b,p,q), M(c,d,r,s), M’(c’,d’,r’,s’) T  so 

that  and  are simultaneously strictly positive 

and nearly identity matrices .

Since we have many parameters, one can take c = c’ ]0,1[ ,and d =  d’ ]0,1– c[. We deduce: 

Equations  for :

]0,1[, , 1, 1 = ( 1)1  
( , )  =  (1– )   +  ((1– )  + ), , ]0,1[, 0 

 ]0, + [, 0,  =  ( )  
 = ( ) ,  =  , = ( ) 

=  + ( )  +  1             (6) 
Equations for  :

’ ]0,1[, ’ , ’ 1, 1’ = ( ’ 1)1  
( ’, ’)  =   (1– ’)  +  ’((1– ’)  + ’ ), ’, ’  ]0,1[, ’ 0 

’ ]0, + [, ’ 0, ’ =  ’ 
 =  ’ 1 ’  

= ’ 1’  
= ’ ’  +  ’ ’  +  1 (7)

Derived equations:

’ = ( ’ ) , ’ = ’  
’ = ’( ) , ’ = ( ’ ) (8) 

The point ’( ’ , ’)must be inside the triangle ABC and close 
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to A (we have chosen = and =  . Put = ’––  and 

= ’–– then ’ = , ’ = , ’ =  , and ’ =  .

Now choose h and k to ensure that N2’ is inside ABC and close to 

A. Let ( ’, ’)   =   (1– ’) ’ +  ’((1– ’) ’ + ’ ’, ’, ’  ]0,1[ , where ’ =  ( ( – – ) , ) , ’ = (– , 0) and ’ =  (0, – ) . 
Choose h  ] , 1[, then ’ is in ABC. To have ’ in ABC, 

let’s use linear interpolation to get k in terms of h, that is:  = (1– ) + where = ( )–  , =
( – – )  ( – ) and ]0,1[ . Note that ]0,1[  then ’ is in 

ABC.

Since ’ = ( – ) + ,  ’ = ( – ) + , we get no 

contradiction with ’ ]0,1[, ’ , and 3’  ]0, /( + )[.
Choose , 1then ’ 1, and  ’ 0.

Finally, the equations for and simultaneously 

strictly positive and nearly identity matrices are:]0,1[, ]0,1– [, 
]0,1[, , 1, = – ( – 1)1–  

( , )  =  (1– )  +  ((1–  2)  +  ), , ]0,1[, 0 
]0, + [,  0,  =  ( )  

 ] + , 1[, 1 
=  ( + )–  

= (1– – ) +  (1– )  
= ( )((1– )  +  ), ]0,1[ 

1’ =  ( 1– )  +  , ’ = – ( ’– 1)1–  
’ = ( – ) + , ’ = ( ) ’

’ =   ’ =                                   (9) 
E. Embedding/Extracting the watermark, Algorithm 2Em/2Ex

Let   =  , =  , =  ’.
We get respectively from (1) and (2): = (1– )  +        =   + –  ( )   .

RESULTS AND DISCUSSION
In what follows, we apply embedding Algorithm 1Em and 

Algorithm 2Em to watermark host image i with watermark w, then 
we attack  watermarked image iw using various attacks and 
finally, we extract the attacked watermark by applying 
extraction Algorithm 1Ex and Algorithm 2Ex. Suppose i and w are 
the images in Fig. 3.

Fig. 3: Host image i and watermark w(Resp)

A. Testing Algorithm 1Em

Table 1 shows w embedded into i using Algorithm 1Em and some 
watermarked images iw for  =   =   =   = =   =  0 and various values of t, and .

A great number of cases occurs but we apply the algorithm only 
in the case = = and = =
B. Testing Algorithm 1Ex

We have attacked all the watermarked images shown Table 1,
obtaining images iwa. We then have proceeded to extracting the 
attacked watermark wa from iwa. As expected, the best-extracted
watermarks are obtained when i w and 1 (Table 2). In 
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particular, see extractions in case of JPEG, noise and Gaussian blur
attacks.

C. Testing Algorithm 2Em

We have considered image i and watermark w in Fig. 3 and we
have arbitrarily chosen = 0.99, = 0.5, = (1– )/4, = 0.9,  = = 0.1, = /( + ) + (1 /( + ))/10 . All the images in Table 3 are watermarked and as expected, 
the watermarked image with  = 0.9  and   = [ /( +

)]/2000 is the nearest from image i.

D. Testing Algorithm 2Ex

We have attacked the watermarked images using same benchmark. 
With the values of the parameters chosen in embedding algorithm, 
we obtained results given in Table 4, below. We see that the 
extracted watermarks are very close to the original watermark 
proving robustness of the algorithm.

Table 1. Embedding a watermark using Algorithm 1Em= , = = , = = , =
= .

= .

= .    
Table 2. Extracting a watermark using Algorithm 1Ex ( = . , = , = )

iwa

wa

JPEG_50           Noise_(0,5) Gaussian blur radius=5
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Table 3. Embedding a watermark using Algorithm 2Em with t = 0.99

X1

X3 0.1                 0.5       0.9

 +  

 +  

Table 4. Extracting a watermark using Algorithm 2Ex( = . , = . , = [ /( + )]/ .  )

iwa

wa

JPEG_50 Noise_(0,5) Gaussian blurr radius=5

CONCLUSIONS
In this article, we focused on watermarking color and grayscale 

images, including Dicom images, and on extracting the 
watermark using domain transformations. Specifically, we 
transformed the RGB cube into a parallelepiped and a space 
similar to the YUV space. We then marked the images using both 
embedding methods and tested their robustness against some 
attacks. After any attack, we proceeded to extract the watermark. 
Numerous tests were performed, which demonstrate the strength 

of our algorithms, indeed, our methods demonstrate a high 
degree of resilience against attacks of the host watermarked 
image.  This work is part of a larger ongoing project that 
involves developing models based on graph wavelets and data 
coding.
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Innovative Deep Neural Network Models for Multilingual 

Translation Applied to Dyslexia  
R. Bencheikh,a, * A. Moussaoui,a
a Computer Science Department, Faculty of Sciences, Ferhat Abbas-Setif1 University, Setif-19000, Algeria

ABSTRACT: Machine Translation is one of the most prominent-difficult topics in Natural Language Processing. It is based
on building machine-learning models that can understand human languages and predict a target translation from a source 
expression. Actually, automation, as in different fields of our lives involving medicine, achieve prominent developments. Whatever 
the field that needs an automation solution, medical image can be used to recognize natural language processing. Dyslexia is a
domain where such automation can be applied. Indeed, the diagnosis of this disorder brain disease implies the use of appropriate 
and standardized tests. This disease affects reading and language processing by making some challenge to some people to 
recognize and decode words and comprehend written text despite having average or above-average intelligence. This work presents 
a detailed comparative study between advanced approaches applied to natural language processing, mainly in machine translation 
task. Twelve (12) models and experiments in total were replicated, trained, and then validated on two types of datasets for both 
Language Support and Speech to Text Conversion in case of multilingual translation. Thus, many translation directions were 
considered (Turkish-English, English-Turkish, Spanish English, English Spanish, and Turkish-Spanish). The performed 
experiments show that Transformer based models tend to give better performance despite of linguistic complexities for natural 
languages translation task from Turkish, Spanish, or English. High accuracy models were applied for second data set by adding
the speech-to-text task to make transcriptions that can help dyslexic individuals. Accuracy of 95% was achieved for whisper 
model.
Keywords: Machine translation; Deep-learning, Transformers; Dyslexia, Many-to-Many-100 models; Whisper model.

INTRODUCTION
Some learners fail to acquire the mechanisms involved in reading 

despite normal intelligence and the absence of any motor or 

sensory deficit. It is about dyslexia(originated from the Greek 

language)1. which is a neurological condition that also known 

until the 1960s as word blindness and it is believed to be caused 

by the interaction of genetic and environmental factors while its 

treatment involves adjusting teaching methods to meet the 

person's needs. by the way there are 9,000 cases of dyslexia in 

Algeria.

Developmental Dyslexia (i.e., dyslexia which is genetic, present 

from birth, and develops over time) is generally observed among 

the younger school-going population who performs poorly in 

schools and often faces difficulties during their studies. This 

ultimately results in negative emotions, such as anger, frustration, 

depression, anxiety, and low self-esteem 1.So, dyslexic people 

have specific difficulties in three areas: phonological processing, 

working memory and processing speed, From the definition 
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above, it becomes clear that conventional language teaching 

methods usually do not work for learners with dyslexia, but with 

the teacher’s awareness and support, they might overcome their 

difficulties, Teacher awareness of dyslexia is very important to 

the success of affected children because many learners with 

reading difficulties report high levels of anxiety and fear for the 

reason that, their teachers have a poor understanding and 

insufficient awareness of this impairment.2

AI refers to the development of machines and systems to enable 

them to implement functions and tasks that demand human 

intelligence, such as translation, decision making, visual 

perception, and speech recognition. ML is considered a part of 

AI, which concentrates on the evolution of computer programs 

that use different datasets to learn for themselves.  

In “phonological dyslexia”, during the reading, fMRI(Magnetic 

Resonance Imaging) displays paralysis of three regions that are 

concerned with language production and grasping . Additionally, 

compared to controls, DTI(Diffusion Tensor Imaging) reveals 

white matter variation in the language area. In visual attentional 

dyslexia, when dyslexic participants are tasked to recognize 

congruous stimuli pairs, fMRI displays a separation between the 

temporal visual system and parietal attentional system as well as 

a disconnection, in the left hemisphere, of the temporal and 

occipital zones. In the “dyspraxia form of dyslexia”, there is 

inactivation in the cerebellum–ventral frontotemporal and 

cerebellum–dorsal frontoparietal pathway. Besides fMRI, the 

surface measurement of brain potential, known as 

EEG(Electroencephalography), assists in identifying brain 

activation patterns (Fig.1). During spelling tests, phoneme 

deletion, the rapid naming of letters, and articulation, increased 

vigor is observed in the theta and delta EEG frequency bands in 

the frontal and right temporal zones in dyslexics 3.

Fig. 1: How Dyslexia affects the Brain

Recently, machine-learning techniques have become popular in 

predicting Dyslexia from the data collected through online tests, 

such as reading and writing exercises, online games, tracking eye 

movement, or collecting EEG scans and MRI data while the 

participants engage in reading or writing tasks.4

However, Translation can help dyslexic individuals by translating 

written text into a basic language, other forms of support, such as 

specialized instruction or one-on-one tutoring (One-on-one 

tutoring is a type of educational support that involves a teacher 

or tutor working individually with a student or provide 

personalized instruction and support.), maybe necessary for 

dyslexic individuals to fully develop their reading skills.-2

To translate is to transpose a source-language text into a target-

language text, this although seems like a simple answer, however 

it refers in fact to a dramatically complex problem.

Speech recognition, natural language interpretation, and natural 

language production are all common natural language processing 

challenges.

Machine translation has emerged as one of the most fascinating 

and difficult topics in Natural Language Processing (NLP) and 

Artificial Intelligence (AI). As the name implies, data-driven 

machine translation1 (DDM) is concerned with developing 

translation agents based on data. As a result, machine translation 

systems are now being created both in academia and industry and 

are being sold to end-users as commercial products.

EXPERIMENTAL
Neurological aspects have also been considered in modern 

technologies for diagnosing dyslexia, helping to increase 

detection accuracy and reliability. Medical devices enable 

dyslexia, helping to increase detection accuracy and reliability. 

Medical devices enable the observation of the brain structure of 

dyslexics5.

From figure 2, we can consider that any disorder in the brain’s

left hemisphere would lead to important difficulties in a person’s

ability to read and write and some other skills. So the extended 

temporal processing deficit hypothesis of dyslexia”, suggesting 

that a deficit in temporal processing could explain not only 

language-related peculiarities usually noticed in dyslexic 

children, but also a wider range of symptoms related to impaired
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processing of time in general6. This means that if we want to solve the reading disorder we can do it by organizing other skills.

Our Machine Translation models can provide assistance to Dyslexic individuals by: 3

Fig. 2: Difficulties in brain’s functions because of disordering

Language Support

Machine translation has a large history as we mentioned in the 
second chapter, in our work we tried to train different models 
using both of classical approaches and techniques based on Deep 
learning, for do a comparative study discussed later using the 
multilingual datasets (The OPUS-100 and The Tatoeba Corpus).

1- IBM Statistical Translation model

IBM (International Business Machines) alignment model which
is a sequence of increasingly complex model used in statistical 
machine translation, we check a lexical translation probability 
computed using standard IBM model1 with English language 
(one to many).

2- Seq2Seq with RNN model

We move now to deep learning models, so for text treatment there 
is Recurrent Neural Networks, which are designed to take text 
sequences as inputs and return text sequences as outputs, or both. 
Fully recurrent neural networks (RNN) connect all neurons’
outputs to all neurons’ inputs. Because all other topologies can be 
represented by setting some connection weights to zero to 
simulate the lack of connections between those neurons, this is 
the most general neural network topology.

3- Seq2Seq with LSTM model

Sequence-to-sequence (seq2seq) models can help solve the 
translation problem with an input sequence and giving its 
translated sequence, we developed here a model with LSTM 

(long short term memory) cells, starting with an embedding layer 
at the top of the model. 

4- Seq2Seq with GRU model

The GRU (gated recurrent unit) model is like a long short-term 
memory (LSTM) with a forget gate, but has fewer parameters 
than LSTM, as it lacks an output gate. in this experiment we 
exchanged the LSTM cells by GRU cells starting by the 
embedding layer.

5- Seq2Seq with BLSTM model

Bidirectional Long Short Term Memory is optimized LSTM, 
which can read input sequences from both ends. our idea behind 
this experiment is to develop our model such it can read 
bidirectionally where we used BLSTM cells.

6- Seq2Seq with Attention model

in this experiment we tried to train a sequence to sequence 
(seq2seq) model based on Effective Approaches to Attention-
based Neural Machine Translation presented at and compare it 
with previous Seq2Seq models.

The model consists of two parts:
an Encoder: it takes a list of token IDs where an embedding 
layer generate a vector representing the input and feed it to a 
GRU layer, returning a sequence processed and its internal 
state.

a Decoder: it receives the output of encoder and passes it by an 
attention layer and producing the context vector and feed it to a 
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GRU layer and finally, it generates logit predictions for the next 
token based on the "attention vector".

7- Transformer model

Here we replicate the same Transformer architecture as presented 
in [7]. The Transformer follows this overall architecture using 
stacked self-attention and pointwise, fully connected layers for 
both the encoder and decoder
8- Facebook many to many 100 418M model

We pretrained that model from Beyond English-Centric 
Multilingual Machine Translation (2020) [8] Many to Many 100 
418M(parameters)  is a multilingual encoder-decoder 
(sequence-to-sequence) model trained for Many-to-Many 
multilingual translation.
This model can directly translate between the 9,900 directions of 
100 languages. To translate into a target language, the target 
language id is forced as the first generated token. To force the 
target language id as the first generated token, pass the forced id 
parameter to the generate method.

9- CTranslate2 m2m100 model

This model uses Many to Many -100 models converted to the 
CTranslate2 format. CTranslate2 is a fast inference engine for 
Transformer models. It supports models originally trained with 
(open neural machine translation) OpenNMT-py, OpenNMT-tf, 
and FairSeq. CTranslate2 is preferred for its high efficiency. It is 
cross-platform and can be used either on CPU (central processing 
unit) or GPU(graphics processing unit).

10- mBART-50 one to many model

This model is a fine-tuned checkpoint of mBART-large-50. 
mbart-large-50-one-to-many is fine-tuned for multilingual 
machine translation.it is a model developed by Facebook and 
built using huggingface’s transformers. It was introduced in 
Multilingual Translation with Extensible Multilingual 
Pretraining and Finetuning paper. The model can translate 
English to other 49 languages. To translate into a target language, 

the target language id is forced as the first generated token. To 
force the target language id as
the first generated token, pass the forced id parameter to the 
generate method.
11- M2M100 418M model with pivot approach

In this experiment w tried to pretrain the Many to Many 100 
418M model to translate from Turkish to Spanish using the pivot 
language English.

Speech to Text Conversion

This solution consists of using the technology to convert spoken 
language into written text. This technology can be highly 
beneficial for individuals with dyslexia, a learning disability that 
can make reading and writing more challenging. We used for this 
part the medical datasets (PxCorpus: A Spoken Drug 
Prescription Dataset in French for Spoken Language 
Understanding).

1-Whisper model

The Whisper architecture is a simple, implemented as encoder-
decoder Transformer.

Input audios must be converted into spectrograms and then 
passed into the encoder; the decoder is trained to predict the 
corresponding text caption. Whisper checkpoints come in five 
configurations of varying model sizes. The smallest four are 
trained on either English-only or multilingual data, and because 
our PxCorpus is small and its recordings directory contains the 
903 recording sessions. Each session can contain several 
recordings; we used the tiny version of whisper model.

RESULTS AND DISCUSSION

According to results displayed in Table 1 related to accuracy, and 
main metrics used to compare between models, the following 
statements and conclusions can be drawn.

Table 1. Studied Experimental for Turkish and French languages

N° Model Bleu scores1 Accuracy

1 IBM model 1  0.0102 

0.0446

0.0204 0.0257

/

2 Seq2Seq with RNN 0.0028 

0.0091 

/

1 Bleu score: the Bilingual Evaluation Understudy is a score for comparing a candidate translation of text to one or more reference 

translations.
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0.0135 

0.016

3 Seq2Seq with LSTM 0.0029 

0.0093 

0.0137 0.0165

/

4 Seq2Seq with GRU 0.0037 

0.0115 

0.0169 0.0202

/

5 Seq2Seq with BILSTM 0.0033 

0.0111 

0.0167 0.0202

/

6 Seq2Seq with Attention 0.3062 

0.5534 

0.6767 0.7439

/

7 Transformer 0.3505 

0.0460 

1 

1

/

8               M2M100 418M 0.0275 

1 

1 

1

/

9 CTranslate2 m2m100 0.0296 

1 

1 

1

/

10 mBART-50 0.0296 

1 

1 

1

/

11 Whisper 

Tiny-version

/ 95%

The Statistical Machine Translation experiment was not 
efficient comparing to Neural Machine Translation Models.

In Neural Machine Translation experiments, there is an 
augmented progress of Bleu scores from simple RNN model to 

the Transformer.

The addition of the attention mechanism to the Sequence 
to-Sequence model enhances the model performance in the 

support language part as illustrated by the arrow A in Figure 3.

The model focuses only on the most important tokens.
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Fig. 3: Performance development for support language models

The Transformer model starts increasing the model 
capacity and performance as illustrated by arrow B (Fig.3).

The experiments show that the Transformer based models 
outperforms deep learning models in Neural Machine translation 

unlike the statistical machine translation approaches.

Furthermore, the complexity of the problem is determined 
by the complexity of the vocabulary. A more complex 

vocabulary is a more complex problem. Therefore, the 

complexity of the dataset is very prominent and has a relation 

with the translation direction.

The M2M 100 418M model has shown ideal scores of 
grams in both datasets and increased performance.

Our pivot approach achieved good results for translation 

direction from Turkish to English. Tested examples on that 

model were successfully and correctly translated as shown in 

Figure 4.

The Turkish translation dataset is less performant when 

compared to the spanish-english dataset. The poor performance 

of the translation models is due to the complexity of the Turkish

language (Fig.4).

Fig. 4: Performance development for support language models

Fig. 5: Accuracy achieved for whisper model in speech to text 
conversion

The version of Whisper model is less performant for a small 
dataset but achieves a high accuracy (Fig.5).

To improve the accuracy of a speech-to-text model like 
Whisper, an iterative process of analysis and refinement is 

involved.

CONCLUSIONS
The actual study is related to the application of medical imaging 

neurological to diagnosis Dyslexia. This disease causes a reading 

disorder, affects language processing, and creates challenges to 

recognize and decode words and comprehend written text for 

some people. We are particularly interested in Machine 

Translation, one of the most fascinating and difficult topics in 

Natural Language Processing and Artificial Intelligence. Our 

objective was to develop and propose a performant translation 

model based on deep learning. This model must be a powerful 

language support despite of all linguistics complexities and 

constraints in translation between different languages. A second 

performance constraint for speech to text conversion is related to

the mechanisms involved in reading despite normal intelligence 

and the absence of any motor or sensory deficit. 

This work involves the translation task to be learned to a machine 

with all its complexities related to linguistics and psychology. 

Many machine learning principles and approaches were tested 

and compared to help dyslexic individuals. Thus, several models 

were studied and developed from statistical approaches to deep 
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learning techniques, such as IBM1, BLSTM, GRU, Transformer, 

BERT-based transformers models, and Whisper-Tiny model.

The performance of all these models were validated on several 

datasets.

Results of our experiments demonstrate well that the SMT has 

less efficiency comparing to the NMT where the recent 

Transformer-based models outperform recurrent networks-based 

models in Translation tasks. The Transformer architectures using 

attention mechanism lead to improved training speed.

For the speech to text conversion, Whisper Open AI trained and 

open-source speech recognition model is used. Whisper is a

neural net that approaches human level robustness and accuracy 

for speech recognition. A tiny version appropriated to our 

medical French dataset is considered to achieve our goal.

For future work, we propose to develop a new approach that can 

combine between all linguistics of several languages to achieve

the desired goal by analyzing more deeply the performance of the 

neural translation models. We also aim to more effectively 

leverage the cross-lingual information in data augmentation 

settings to provide more data to the greedy neural translation 

models. Besides, we would like to find a solution for dyslexic 

brain using artificial intelligence techniques combined to

neurological solution.
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With great pleasure, the Organizing 
Committee announces the second call for
abstracts submission and school application
for the second International Conference
and School on Radiation Imaging and
Nuclear Medicine (ICSRI-2023), to be held at
Ferhat Abbas-Seitf1 University, in Setif, 
Algeria, from 11 to 15 June, 2023. The 
conference is supported by the Algerian
Atomic Energy Commission (COMENA).
The conference will include plenary sessions
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scientists, and orally and in poster sessions
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conference.
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researchers in the field of radiation 
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computational models, 3. Medical lasers-
Physics, Clinical Applications and Safety
Management, 4. Artificial intelligence in 
medical image processing, and 4.
Transmission computed tomography.
The conference proceedings will be 
published in a special issue via an 
academic publisher.
The conference will be held at Moloud
Kacem Naït Belkacem Auditorium of 
Ferhat Abbas-Setit1 University, Algeria.

Track 1: Non-medical radiation imaging 
(X- -ray, neutrons, electrons…)

Track 2: Radiation Imaging methods and 
systems development

Track  3: Radiation Imaging Simulation 
and modeling

Track  4: Molecular Imaging and Nuclear 
Medicine (SPECT, SPECT/CT, PET/CT, PET/MR, 
etc)
Track 5: Medical Radiation Imaging (CT, 
Mammography, Fluoroscopy, MRI, US, etc)

Track 6: Advanced Imaging Methods 
(Image Reconstruction, Artificial 
Intelligence, Radiomics, Theragnostics, etc)

Track 7: Image Processing and Data Analysis Techniques
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Registration Fees

Cuicul (Djémila- 55 km from Setif city-)
was built at 900 meters of altitude during
the 1st century AD as a Roman military
garrison. It became a UNESCO World 
Heritage Site for its unique adaptation of 
Roman architecture to a mountain
environment. Significant buildings in 
ancient Cuicul include a theatre, two
fora, temples, basilicas, arches, streets,
fountain and houses. The exceptionally
well preserved ruins surround the forum
of the Harsh, a large paved square with
an entry marked by a majestic arch.

International Program Committee

The registration fees  include:

o Lunch, banquet, 

o Conference proceedings and bag

o City tour & Gala dinner

o For the school participants diners are
included in registration fees.

Students are required to provide a copy of a 
valid ID that certifies their full-time student status.

AAt
AAm
AAz
BBa
DDz
BBe
BBe
BBo
BBo
Bo
Ch

In

Sétif (the capital of Sétif Province) is a town in north-eastern Algeria, 1096 meters
above sea level. It is the second most populated Province after the country's
capital. The streets are tree-lined with a fountain and theater, giving the town
French feel. A large amusement park is located in the center of the city where the
city Zoo can be found. The ruins from Roman, Byzantine, Islamic and colonial eras
adorn the city center.

The local economy deals both with trade and industries. The trade is mainly in
grain and livestock from the surrounding region. Sétif has become the commercial
center of a region where textiles are made, phosphates are mined and cereals
grown. Other industries are woodworking, manufacture of carpets and metal
handicrafts.

Sétif is connected by rail as well as the main national highway.  The city has also
an international airport.

The registration fees are:

Conference
Regular scientists:    15000 DZD (100 Euro) A I *

7000 DZD (50 Euro) ANI**

Doctorate students 10000 DZD (75 Euro) AI
6 000 DZD   (40 Euro) ANI

School 15000 DZD (100 Euro) AI
6000 DZD (40 Euro) ANI

Industrial:                    30000 DZD (200 Euro) ANI

*: Accommodation included, **: Accommodation not included



Day Morning Afternoon

Conference

Day1
Opening Ceremony

Plenary Session

Session 1:

Non-medical radiation 
imaging (X- -ray, 
neutrons, electrons…)

Session 2:

Radiation Imaging 
methods and systems 

development

Session 3:

Radiation Imaging 
Simulation and Modelling

Day2

Session 4:

Molecular Imaging 
and Nuclear 

Medicine (SPECT, 
SPECT/CT, PET/CT, 

PET/MR, etc)

Session 5:

Medical Radiation Imaging 
(CT, Mammography, 

Fluoroscopy, MRI, US, etc)

Session 6:

Advanced Imaging 
Methods (Image 

Reconstruction, Artificial 
Intelligence, Radiomics, 

Theragnostic, etc)

Session 7:

Image Processing and Data 
Analysis Techniques

School

Day1

Lecture 1:

The role of Monte 
Carlo simulations in 
molecular imaging 

and dosimetry

Lecture 2:

Advanced anthropomorphic 
computational models

Lecture 3:

Medical lasers- Physics, 
Clinical Applications and 

Safety Management
(Part1)

Lecture 4:

Medical lasers- Physics, 
Clinical Applications and 

Safety Management

(Part2)

Day2

Lecture 1:

Artificial Intelligence 
(AI) for medical 
image analysis

Lecture 2:

Deep learning (DL) for 
medical image analysis

Practical work 1:

Practical examples of 
machine learning for 

medical image analysis

Practical work 2:

Practical examples of DL
for medical image analysis

Day3

Lecture 1:

Fundamental of 
Transmission 
Tomography

Lecture 2:

Image Reconstruction 
Methods in Computed 

Tomography

Practical work 1:

X-ray Tomography in 
Practice

Practical work 2:

3D Image Reconstruction 
and Analysis
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The second international conference and school on 
Radiation Imaging and Nuclear Medicine (ICSRI-2023), 
11-15 June 2023, was organized for the second time 
by Ferhat Abbas-Setif1 University (UFAS1) in 
partnership with the Algerian Atomic Energy 
Commission (COMENA) and its different research 
centres. The conference brings together researchers, 
practitioners, and students from different universities 
and research centres to discuss the latest advances in 
radiation imaging and nuclear medicine. 
The conference covers different topics related to 
radiation imaging and image processing methods and 
techniques.  
The conference was followed by a practical school of 
three days for PhD students, medical physicists, and 
early-career researchers. The school provides an 
opportunity to learn about the fundamentals and 
practices of simulation and dosimetry in nuclear 
medicine, medical lasers, quality control in 
mammography, computed tomography, and deep-
learning in medical image processing. 

2nd International Conference and School on Radiation Imaging and Nuclear Medicine 
Ferhat Abbas-Sétif1 University, Sétif, Algeria 

11-15 June, 2023 
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	Preface
	The second international conference and school on radiation imaging and nuclear medicine (ICSRI-2023) was held from 11 to 15 June 2023 at Ferhat Abbas-Setif1 University (UFAS1). For the second time, the scientific event has been organized in partnership with the Algerian Atomic Energy Commission (COMENA) and its different research centres. The conference was a real opportunity to bring together researchers, practitioners, and students of different backgrounds to discuss the latest advances in radiation imaging, nuclear medicine, and medical image processing.
	The conference was able to cover different topics related to radiation imaging and nuclear medicine physics and technology, such as radiation detectors, imaging techniques and modalities, simulation and modelling, and image processing. Some special topics of interest on radiation therapy and medical imaging were also included. The conference featured keynote speeches from renowned experts and oral and in poster presentations from researchers and PhD students.
	In addition to the conference, there was a school of three days organized just after the conference for students and early-career researchers. The school aimed to provide an opportunity for participants to learn about fundamentals and practical aspects of computed tomography, nuclear medicine, laser application in medicine, as well as to engage in hands-on training sessions and workshops on new trends in data analysis and image processing with a special focus on artificial intelligence and deep-learning. The school was focused on the following main topics:
	 The role of Monte Carlo simulations in Molecular Imaging and Dosimetry,
	 Advanced Anthropomorphic Computational Models,
	 Medical lasers- Physics, Clinical Applications and Safety Management,
	 Mammography: Physics, Image Quality, and Quality Control,
	 Deep Neural Networks for Medical Data Analysis,
	 X-ray and Neutron Transmission Computed Tomography.
	The organizers were committed to ensuring a productive and enjoyable experience for all participants. Researchers, practitioners, and PhD students from different research institutions, with an interest in radiation imaging and nuclear medicine, attended this exciting event and presented a very interesting works.
	The General chair of the organizing committee would like to thank and highlight the outstanding efforts of the local organizing committee and the international scientific Committee. We are extremely grateful to the Dean of the Faculty of Sciences of Ferhat Abbas-Sétif1 university, Prof. Layachi Louail, for his encouragement in the organization of the ICSRI-2023. Thanks are also extended to our very efficient partners: the Algerian Atomic Energy Commission (COMENA), the Nuclear Research Centre of Birine (CRNB), and the Nuclear Research Centre of Algiers (CRNA). 
	Prof. Fayçal KHARFI
	General Chair of the ICSRI-2023 Conference
	Director of the School on Radiation Imaging and Nuclear Medicine
	The Editor in Chef
	Prof. Fayçal Kharfi is Professor of Physics at the Department of Physics, Faculty of Sciences, Ferhat Abbas-Setif1 University. He teaches several courses on molecular imaging, computed tomography, radiation physics and application, and medical physics. He is also the actual Director of the Laboratory of Dosing, Analysis, and Characterisation with high resolution (LDAC). The focus of his actual research activities is on ionizing radiation application. His research crosscuts a range of areas in radiation dosimetry, radiation therapy, computed tomography, and nuclear medicine. His overarching goals are to understand how ionizing radiations act on matter and how to be effectively applied for therapy, imaging, archaeology, and food processing. He is associated editor of the “Technology in Cancer Research & Treatment” SAGE journal. He published many research and educational works in various international journals, books, and conference proceedings. He is a frequent reviewer, an expert in radiation application, and a member of many international associations such as the international society of neutron radiography (ISNR) and the international association of engineers (IAENG). He supervised many doctorate thesis and research projects in the fields of radiation dosimetry and application, radiation therapy, and medical imaging.  He contributes to the organisation of numerous national and international conferences and workshops on medical physics and radiation application. 
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